Algoritmi e strutture dati

Docenti: Andrea Clementi, Luciano Guala'

Comunicazioni


Lezioni

1528-11-2022

Il problema del Dizionario: secondo episodio. Alberi AVL: definizione ed esempi. Dimostrazione della delimitazione superiore dell’altezza di un albero AVL (che usa la nozione di albero di Fibonacci). Operazioni sugli alberi AVL: search, insert, delete.

1424-11-2022

Il problema del Dizionario. Alberi binari di ricerca. Definizione. Visita in ordine simmetrico di un BST. Ricerca, inserimento, cancellazione (ricerca del massimo, del minimo, del predecessore e del successore di un nodo).

1321-11-2022

Esercitazione 3. Esercitazione sulle visite di alberi. Progettazione di un algoritmo che, preso un albero con valori e colori (rosso e nero), trova il valore del cammino rosso di tipo nodo-radice di valore massimo. Altro esercizio: progettare un algoritmo che,  preso un albero e in intero h, restituisce il numero di nodi dell'albero di profondità almeno h. Altro esercizio: preso un albero binario con valori, calcola il numero di nodi per cui la somma dei valori degli antenati è uguale alla somma dei valori dei discendenti.

1217-11-2022

Strutture dati elementari: rappresentazioni indicizzate e rappresentazioni collegate. Implementazione di un dizionario con array ordinato/non ordinato e lista ordinata/non ordinata. Rappresentazioni di alberi. Algoritmi di visita di un albero: profondità versione iterativa, profondità versione ricorsiva (preordine, postordine, ordine simmetrico), ampiezza. Algoritmo per calcolare l’altezza di un albero.

1114-11-2022

Esercitazione 2. Primo esercizio: dato un array di n numeri unimodale, progettare un algoritmo con complessità o(n) che trova il massimo e uno con complessità o(n log n) che lo ordina. Secondo esercizio: dato un vettore A di n numeri, progettare un algoritmo che in tempo O(n) trova due indici i e j con i<j che massimizzano A[j]-A[i].

1010-11-2022

Esercitazione 1. Esercizio: dimostrare o confutare una relazione asintotica. Esercizio di progettazione di un algoritmo che, dato un vettore ordinato A di n interi distinti e un valore x, trova (se esistono) due elementi di A che sommano a x. Soluzione banale con complessità quadratica, soluzione di complessità O(n log n) e soluzione con tempo O(n).

907-11-2022

Ancora algoritmi di ordinamento non basati su confronti. Una variante dell’IntegerSort per ordinare n record con chiavi intere: BucketSort. Un algoritmo veloce per ordinare interi “grandi”: il RadixSort. Discussione del seguente esercizio: dato un array di n interi compresi fra 1 e k, costruire in tempo O(n+k) un oracolo (struttura dati) che sia in grado di rispondere in tempo costante a domande del tipo "quanti interi nell'array sono compresi fra a e b?"(Esercizio e soluzioni a fine delle slide sull'IntegerSort).

803-11-2022

Delimitazioni superiori e inferiori di algoritmi e problemi. Un lower bound alla complessità temporale necessaria per ordinare n elementi (per una classe di algoritmi ragionevoli, quelli basati su confronti). Un algoritmo veloce per ordinare interi “piccoli”: IntegerSort.

724-10-2022

Progettare algoritmi efficienti attraverso la progettazione di strutture dati efficienti. Un esempio: l'HeapSort - che ordina in loco n elementi in tempo O(n log n) nel caso peggiore.

620-10-2022

Il Problema dell’ordinamento. Un algoritmo semplice ma inefficiente: il Selection Sort. Un algoritmo migliore: il MergeSort. Un altro algoritmo che usa la tecnica divide et impera: il QuickSort: analisi del caso peggiore, migliore, e intuizioni sul caso medio. Discussione versione randomizzata del QuickSort e differenza fra complessità nel caso medio e tempo atteso di un algoritmo randomizzato.

517-10-2022

Ancora sulle equazioni di ricorrenza. Metodo della sostituzione. Teorema Fondamentale delle Ricorrenze (Master). Semplici esempi. Quando non si può applicare. Metodo del cambiamento di variabile.

413-10-2022

Analisi della complessità nel caso medio: un esempio. Il problema della ricerca di un elemento in un insieme: ricerca sequenziale e ricerca binaria. Equazioni di ricorrenza. Metodo dell’iterazione. Metodo che usa l’albero della ricorsione.

310-10-2022

Modello di calcolo RAM. Costi uniformi e logaritmici. Complessità caso peggiore e medio. Notazioni asintotiche: O-grande, Omega-grande, Theta. O-piccolo, Omega-piccolo. Definizioni e semplici esempi. Proprietà. Usare la notazione asintotica nelle analisi della complessità computazionale degli algoritmi.

206-10-2022

Il problema del calcolo dell’n-esimo numero di Fibonacci. Un algoritmo numerico e un algoritmo ricorsivo. Analisi della complessità temporale dell’algoritmo ricorsivo. Un algoritmo iterativo di complessità temporale O(n) e di complessità spaziale O(n) (Fibonacci3). Portare la memoria a O(1): Fibonacci4. Introduzione informale alla notazione asintotica. Algoritmo con complessità O(log n) per il calcolo dell’n-simo numero di Fibonacci. Discussione della complessità spaziale degli algoritmi ricorsivi Fibonacci2 e Fibonacci6.

103-10-2022

Introduzione al corso. Motivazioni e concetti fondamentali. Un primo esempio: il problema di trovare una moneta falsa (più pesante) fra n monete usando una bilancia a due piatti.


Materiale didattico

Informazioni

Anno accademico2022-2023
Crediti12
SettoreINF/01
Anno2
Semestre1-2
PropedeuticitàAnalisi Matematica. Matematica discreta. Programmazione dei calcolatori con laboratorio.

Programma

https://www.mat.uniroma2.it/~guala/


Testi di riferimento

https://www.mat.uniroma2.it/~guala/


Ricevimento studenti

https://www.mat.uniroma2.it/~guala/


Modalità di esame

https://www.mat.uniroma2.it/~guala/