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5.

Reasoning with Horn 
Clauses
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Horn clauses

Clauses are used two ways:
• as disjunctions: (rain ∨ sleet)

• as implications:  (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause  =  exactly one +ve literal

e.g. [¬p1, ¬p2, ..., ¬pn, q]

• negative clause  =  no +ve literals 
e.g. [¬p1, ¬p2, ..., ¬pn]  and also [ ]

Note: [¬p1, ¬p2, ..., ¬pn, q]   is a representation for
(¬p1 ∨ ¬p2 ∨ ... ∨ ¬pn ∨ q)   or     [(p1 ∧ p2 ∧ ... ∧ pn)  ⊃  q]

so can read as: If  p1 and  p2 and  ... and  pn  then q

and write as:   p1 ∧ p2 ∧ ... ∧ pn  ⇒  q    or    q  ⇐  p1 ∧ p2 ∧ ... ∧ pn
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Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations of negative clauses so that 
all new derived clauses are negative

Neg Pos

Neg

Pos Pos

Pos

[¬a, ¬q, p] [¬b, q]

[ p, ¬a, ¬b][¬c, ¬p]

[¬a, ¬b, ¬c]

[¬a, ¬q, p]

[¬b, q][¬a,¬c, ¬q]

[¬c, ¬p]

[¬a, ¬b, ¬c]
derived positive
clause to eliminate
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Further restricting resolution

Can also change derivations such that each derived clause is a 
resolvent of the previous derived one (negative) and some 
positive clause in the original set of clauses

• Since each derived clause is negative, one parent must be positive (and so 
from original set) and one parent must be negative.

• Chain backwards from the final negative clause until both parents are from 
the original set of clauses

• Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations
• See previously:

– example 1, example 3, arithmetic example

• But not:
– example 2, the 3 block example

c1

c2

c3

cn

cn-1

new

old
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SLD Resolution

An SLD-derivation of a clause c from a set of clauses S is a 
sequence of clause c1, c2, ... cn such that cn = c, and

1. c1 ∈ S
2. ci+1 is a resolvent of ci and a clause in S

Write:   S  →  c

Note: SLD derivation is just a special form of derivation 
and where we leave out the elements of S  (except c1)

In general, cannot restrict ourselves to just using SLD-Resolution  

Proof:  S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}. Then  S → [].
Need to resolve some [ ρ ] and [ ρ ] to get [].
But S does not contain any unit clauses.

So will need to derive both [ ρ ] and [ ρ ]  and then resolve them together.

SLD
SLD  meansS(elected) literals

L(inear) form
D(efinite) clauses
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Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses:   H → []   iff  H → []

So:    H is unsatisfiable iff  H  →  []

This will considerably simplify the search for derivations

Note:  in Horn version of SLD-Resolution, each clause in the 
c1, c2, ..., cn, will be negative

So clauses H  must contain at least one negative clause, c1 
and this will be the only negative clause of H used.

Typical case:  

– KB is a collection of positive Horn clauses

– Negation of query is the negative clause 

SLD

 SLD



KR & R              ©  Brachman & Levesque  2005   84

Example 1 (again)

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

Girl

Child     Female

FirstGrade

goal

solved

solved

FirstGrade

FirstGrade  ⊃  Child

Child ∧ Male ⊃ Boy

Kindergarten  ⊃  Child

Child ∧ Female ⊃  Girl

Female

KB

Show  KB ∪ {¬Girl}  unsatisfiable

SLD derivation alternate representation

A goal tree whose nodes are atoms, 
whose root is the atom to prove, and 
whose leaves are in the KB
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Prolog

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u′)

Append(nil, cons(c,nil), u′′)

solved:

u / cons(a,u′)

u′ / cons(b,u′′)

u′′ /  cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is:  Append([a b],[c],[a b c])

goal

What is the result of appending [c] to the list [a,b] ?

Horn clauses form the basis of Prolog

Append(nil,y,y)

Append(x,y,z)  ⇒  Append(cons(w,x),y,cons(w,z))

With SLD derivation, can 
always extract answer from proof 

H  |=  ∃x α(x)    

iff   

for some term t,  H  |=  α(t)

Different answers can be found 
by finding other derivations 
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Back-chaining procedure

Solve[q1, q2, ..., qn] = /*  to establish conjunction of qi   */

If n=0  then return YES;    /*  empty clause detected  */

For each d  ∈  KB  do

If  d = [q1, ¬p1, ¬p2, ..., ¬pm] /* match first q */

and             /* replace q by -ve lits */

    Solve[p1, p2, ..., pm, q2, ..., qn] /* recursively */

then return YES

end for;                     /* can't find a clause to eliminate q */

Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...

• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.
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Problems with back-chaining

Can go into infinite loop
tautologous clause:  [p , ¬p]  (corresponds to Prolog program with  p :- p).

Previous back-chaining algorithm is inefficient

Example: Consider 2n atoms,  p0, ..., pn-1, q0, ..., qn-1   and 4n-4 clauses

(pi-1  ⇒  pi),  (qi-1  ⇒  pi),  (pi-1  ⇒  qi),  (qi-1  ⇒  qi).

With goal pk    the execution tree is like this

Is this problem inherent in Horn clauses?

pk

pk-1 qk-1

pk-2 qk-2 pk-2 qk-2

... ... ... ...

Solve[pk] eventually 
fails after 2k steps!
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Forward-chaining

Simple procedure to determine if Horn KB |= q.
main idea:  mark atoms as solved

FirstGrade example:
Marks:  FirstGrade,  Child,  Female, Girl  then done!

Observe:
• only letters in KB can be marked, so at most a linear number of iterations

• not  goal-directed, so not always desirable

• a similar procedure with better data structures will run in linear time overall

1. If q is marked as solved, then return YES

2. Is there a {p1,¬p2, ...,¬pn} ∈ KB such that
p2, ..., pn are marked as solved, but the 
positive lit p1 is not marked as solved?

no: return NO

yes: mark p1  as solved, and go to 1.

Note: FirstGrade gets marked since 
all the negative atoms in the 
clause (none) are marked
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First-order undecidability

Even with just Horn clauses, in the first-order case we still have 
the possibility of generating an infinite branch of resolvents.

As with non-Horn clauses, the best that we can do is to give 
control of the deduction to the user

to some extent this is what is done in Prolog, 
but we will see more in “Procedural Control”

KB:

LessThan(succ(x),y)  ⇒  LessThan(x,y)

Query:

LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

There is no procedure that will test for the
satisfiability of first-order Horn clauses

the question is undecidable


