
KR & R © Brachman & Levesque 2005 118

8.

Object-Oriented
Representation

KR & R © Brachman & Levesque 2005 119

Organizing procedures

With the move to put control of inference into the user’s hands,
we’re focusing on more procedural representations

knowing facts by executing code

Even production systems are essentially programming languages.

Note also that everything so far is flat, i.e., sentence-like
representations

• information about an object is scattered in axioms

• procedure fragments and rules have a similar problem

With enough procedures / sentences in a KB, it could be critical to
organize them

• production systems might have rule sets, organized by context of
application

• but this is not a natural, representational motivation for grouping

KR & R © Brachman & Levesque 2005 120

Object-centered representation

Most obvious organizational technique depends on our ability to
see the world in terms of objects

• physical objects:
– a desk has a surface-material, # of drawers, width, length, height, color,

procedure for unlocking, etc.

– some variations: no drawers, multi-level surface, built-in walls (carrel)

• also, situations can be object-like:
– a class: room, participants, teacher, day, time, seating arrangement, lighting,

procedures for registering, grading, etc.

– leg of a trip: destination, origin, conveyance, procedures for buying ticket,
getting through customs, reserving hotel room, locating a car rental etc.

Suggests clustering procedures for determining properties,
identifying parts, interacting with parts, as well as constraints
between parts, all of objects

• legs of desk connect to and support surface

• beginning of a travel leg and destination of prior one

object-centered
constraints

KR & R © Brachman & Levesque 2005 121

Situation recognition

Focus on objects as an organizational / chunking mechanism to
make some things easier to find

Suggests a different kind of reasoning than that covered so far
basic idea originally proposed by Marvin Minsky

• recognize (guess) situation; activate relevant object representations

• use those object representations to set up expectations
some for verification; some make it easier to interpret new details

• flesh out situation once you’ve recognized

Wide applicability, but typical applications include
• relationship recognition e.g., story understanding

• data monitoring

• propagation and enforcement of constraints for planning tasks
this latter is most doable and understandable,
so we will concentrate on it

KR & R © Brachman & Levesque 2005 122

Basic frame language

Let’s call our object structures frames
note wide variety of interpretations in literature

Two types:

• individual frames
represent a single object like a person, part of a trip

• generic frames
represent categories of objects, like students

An individual frame is a named list of buckets called slots. What
goes in the bucket is called a filler of the slot. It looks like this:

where frame names and slot names are atomic,
and fillers are either numbers, strings or the
names of other individual frames.

(frame-name
<slot-name1 filler1>
<slot-name2 filler2 > …)

Notation: individual frames: toronto
slot names: :Population (note “:” at start)
generic frames: CanadianCity

KR & R © Brachman & Levesque 2005 123

Instances and specializations

Individual frames have a special slot called :INSTANCE-OF
whose filler is the name of a generic frame:

(toronto
<:INSTANCE-OF CanadianCity>
<:Province ontario>
<:Population 4.5M>…)

(tripLeg123-1
<:INSTANCE-OF TripLeg>
<:Destination toronto>…)

Generic frames have a syntax that is similar to that of individual
frames, except that they have a slot called :IS-A whose filler is the
name of another generic frame

(CanadianCity
<:IS-A City>
<:Province CanadianProvince>
<:Country canada>…)

We say that the frame toronto is an
instance of the frame CanadianCity
and that the frame CanadianCity is a
specialization of the frame City

KR & R © Brachman & Levesque 2005 124

Procedures and defaults

Slots in generic frames can have associated procedures
1. computing a filler (when no slot filler is given)

(Table
 <:Clearance [IF-NEEDED computeClearanceFromLegs]> …)

2. propagating constraints (when a slot filler is given)
(Lecture

 <:DayOfWeek WeekDay>
 <:Date [IF-ADDED computeDayOfWeek]> …)

If we create an instance of Table, the :Clearance will be
calculated as needed. Similarly, the filler for :DayOfWeek will be
calculated when :Date is filled.

For instances of CanadianCity, the :Country slot will be filled
automatically. But we can also have

(city135
<:INSTANCE-OF CanadianCity>
<:Country holland>)

The filler canada in CanadianCity
is considered a default value.

KR & R © Brachman & Levesque 2005 125

IS-A and inheritance

Specialization relationships imply that procedures and fillers of
more general frame are applicable to more specific frame:
inheritance.

(Elephant
<:IS-A Mammal>
<:Colour gray> ...)

(RoyalElephant
<:IS-A Elephant>
<:Colour white>)

(clyde
<:INSTANCE-OF RoyalElephant>)

(CoffeeTable
<:IS-A Table> ...)

(MahoganyCoffeeTable
<:IS-A CoffeeTable> ...)

For example, instances of
MahoganyCoffeeTable
will inherit the procedure from
Table (via CoffeeTable)

Similarly, default values are
inheritable, so that Clyde
inherits a colour from
RoyalElephant, not Elephant

KR & R © Brachman & Levesque 2005 126

Reasoning with frames

Basic (local) reasoning goes like this:
1. user instantiates a frame, i.e., declares that an object or situation exists

2. slot fillers are inherited where possible

3. inherited IF-ADDED procedures are run, causing more frames to be
instantiated and slots to be filled.

If the user or any procedure requires the filler of a slot then:
1. if there is a filler, it is used

2. otherwise, an inherited IF-NEEDED procedure is run, potentially causing
additional actions

Globally:
• make frames be major situations or object-types you need to flesh out

• express constraints between slots as IF-NEEDED and IF-ADDED
procedures

• fill in default values when known
⇒ like a fancy, semi-symbolic spreadsheet

KR & R © Brachman & Levesque 2005 127

Planning a trip

A simple example: a frame system to assist in travel planning
(and possibly documentation – automatically generate forms)

Basic structure (main frame types):

• a Trip will be a sequence of TravelSteps

these will be linked together by slots

• a TravelStep will usually terminate in a LodgingStay (except the last, or one
with two travels on one day)

– a LodgingStay will point to its arriving TravelStep and departing
TravelStep

– TravelSteps will indicate the LodgingStays of their origin and destination

travelStep17a travelStep17b travelStep17c

lodgingStay17a lodgingStay17b

trip17

(trip17
<:INSTANCE-OF Trip>
<:FirstStep travelStep17a>
<:Traveler ronB> ...)

KR & R © Brachman & Levesque 2005 128

Parts of a trip

TravelSteps and LodgingStays share some properties (e.g.,
:BeginDate, :EndDate, :Cost, :PaymentMethod), so we might create a
more general category as the parent frame for both of them:

(TripPart
<:BeginDate>
<:EndDate>
<:Cost>
<:PaymentMethod> …)

(LodgingStay
<:IS-A TripPart>
<:ArrivingTravelStep>
<:DepartingTravelStep>
<:City>
<:LodgingPlace> …)

(Trip
<:FirstStep TravelStep>
<:Traveler Person>
<:BeginDate Date>
<:TotalCost Price> ...)

(TravelStep
<:IS-A TripPart>
<:Means>
<:Origin> <:Destination>
<:NextStep> <:PreviousStep>
<:DepartureTime> <:ArrivalTime>
<:OriginLodgingStay>
<:DestinationLodgingStay> …)

KR & R © Brachman & Levesque 2005 129

Travel defaults and procedures

Embellish frames with defaults and procedures
(TravelStep

<:Means airplane> ...)

(TripPart
<:PaymentMethod visaCard> ...)

(TravelStep
<:Origin [IF-NEEDED {if no SELF:PreviousStep then newark}]>)

(Trip
<:TotalCost
 [IF-NEEDED

{ x←SELF:FirstStep;
 result←0;
 repeat
 { if exists x:NextStep

then
{ result←result + x:Cost +
 x:DestinationLodgingStay:Cost;
 x←x:NextStep }

 else return result+x:Cost }}]>)

Program notation (for an imaginary language):
• SELF is the current frame being processed

• if x refers to an individual frame, and y to a slot,
then xy refers to the filler of the slot

assume this
is 0 if there is
no LodgingStay

KR & R © Brachman & Levesque 2005 130

More attached procedures

(TravelStep
<:NextStep
 [IF-ADDED
 {if SELF:EndDate ≠ SELF:NextStep:BeginDate

 then
 SELF:DestinationLodgingStay ←

 SELF:NextStep:OriginLodgingStay ←
 create new LodgingStay
 with :BeginDate = SELF:EndDate

 and with :EndDate = SELF:NextStep:BeginDate
 and with :ArrivingTravelStep = SELF

 and with :DepartingTravelStep = SELF:NextStep
 …}]>

 …)

(LodgingStay
<:City [IF-NEEDED {SELF:ArrivingTravelStep:Destination}]…> ...)

Note: default :City of LodgingStay, etc. can also be calculated:

KR & R © Brachman & Levesque 2005 131

Frames in action

Propose a trip to Toronto on Dec. 21, returning Dec. 22

(trip18
<:INSTANCE-OF Trip>
<:FirstStep travelStep18a>)

(travelStep18a
<:INSTANCE-OF TravelStep>
<:BeginDate 12/21/98>
<:EndDate 12/21/98>
<:Means>
<:Origin>
<:Destination toronto>
<:NextStep> <:PreviousStep>
<:DepartureTime> <:ArrivalTime>)

(travelStep18b
<:INSTANCE-OF TravelStep>
<:BeginDate 12/22/98>
<:EndDate 12/22/98>
<:Means>
<:Origin toronto>
<:Destination>
<:NextStep>
<:PreviousStep travelStep18a>
<:DepartureTime> <:ArrivalTime>)

(travelStep18a
<:NextStep travelStep18b>)

the first thing to do is to create
the trip and the first step

the next thing to do is to create
the second step and link it to the first
by changing the :NextStep

KR & R © Brachman & Levesque 2005 132

Triggering procedures

IF-ADDED on :NextStep then creates a LodgingStay:

(lodgingStay18a
<:INSTANCE-OF LodgingStay>
<:BeginDate 12/21/98>
<:EndDate 12/22/98>
<:ArrivingTravelStep travelStep18a>
<:DepartingTravelStep travelStep18b>
<:City>
<:LodgingPlace>)

travelStep18a
 :BeginDate 12/21/98
 :EndDate 12/21/98
 :Means
 :Origin
 :Destination toronto
 :NextStep
 :PreviousStep
 :DepartureTime
 :ArrivalTime
 :DestinationLodgingStay
 :Cost

travelStep18b
 :BeginDate 12/22/98
 :EndDate 12/22/98
 :Means
 :Origin toronto
 :Destination
 :NextStep
 :PreviousStep
 :DepartureTime
 :ArrivalTime
 :OriginLodgingStay
 :Cost

trip18
 :FirstStep

lodgingStay18a
 :BeginDate 12/21/98
 :EndDate 12/22/98
 :ArrivingTravelStep
 :DepartingTravelStep
 :City
 :LodgingPlace
 :Cost

If requested, IF-NEEDED can provide :City for lodgingStay18a (toronto)

which could then be overridden by hand, if necessary
(e.g. usually stay in North York, not Toronto)

Similarly, apply default for :Means and default calc for :Origin

KR & R © Brachman & Levesque 2005 133

Finding the cost of the trip

Finally, we can use :TotalCost IF-NEEDED procedure (see above)
to calculate the total cost of the trip:

• result← 0, x←travelStep18a, x:NextStep=travelStep18b

• result←0+$321.00+$124.75; x← travelStep18b, x:NextStep=NIL

• return: result=$445.75+$321.00 = $766.75

travelStep18a
 :BeginDate 12/21/98
 :EndDate 12/21/98
 :Means airplane
 :Origin newark
 :Destination toronto
 :NextStep
 :PreviousStep
 :DepartureTime 0900
 :ArrivalTime 1024
 :DestinationLodgingStay
 :Cost $321.00

travelStep18b
 :BeginDate 12/22/98
 :EndDate 12/22/98
 :Means airplane
 :Origin toronto
 :Destination newark
 :NextStep
 :PreviousStep
 :DepartureTime 1750
 :ArrivalTime 1915
 :OriginLodgingStay
 :Cost $321.00

trip18
 :FirstStep

lodgingStay18a
 :BeginDate 12/21/98
 :EndDate 12/22/98
 :ArrivingTravelStep
 :DepartingTravelStep
 :City northYork
 :LodgingPlace novotel
 :Cost $124.75

So far...

KR & R © Brachman & Levesque 2005 134

Using the formalism

Main purpose of the above: embellish a sketchy description with
defaults, implied values

• maintain consistency

• use computed values to
1. allow derived properties to look explicit

2. avoid up front, potentially unneeded computation

Monitoring
• hook to a DB, watch for changes in values

• like an ES somewhat, but monitors are more object-centered, inherited

Scripts for story understanding
generate expectations (e.g., restaurant)

Real, Minsky-like commonsense reasoning
• local cues ⇒ potentially relevant frames ⇒ further expectations

• look to match expectations ; mismatch ⇒ “differential diagnosis”

KR & R © Brachman & Levesque 2005 135

Extensions

1. Types of procedures
• IF-REMOVED

e.g., remove TravelStep ⇒ remove LodgingStay

• “servants” and “demons”
flexible “pushing” and “pulling” of data

2. Slots
• multiple fillers

• “facets” – more than just defaults and fillers
– [REQUIRE <class>] (or procedure)

– PREFER – useful if conflicting fillers

3. Metaframes
(CanadianCity <:INSTANCE-OF GeographicalCityType> …)

(GeographicalCityType <:IS-A CityType>
<:AveragePopulation NonNegativeNumber> …)

4. Frames as actions (“scripts”)

KR & R © Brachman & Levesque 2005 136

Object-oriented programming

Somewhat in the manner of production systems, specifying
problems with frames can easily slide into a style of programming,
rather than a declarative object-oriented modeling of the world

• note that direction of procedures (pushing/pulling) is explicitly specified
not declarative

This drifts close to conventional object-oriented programming
(developed concurrently).

• same advantages:
– definition by specialization

– localization of control

– encapsulation

– etc.

• main difference:
– frames: centralized, conventional control regime (instantiate/ inherit/trigger)

– object-oriented programming: objects acting as small, independent agents
sending each other messages

