Universität Bielefeld

'ESSLLI 2012 Ontology-based Interpretation of Natural Language

August 16, 2012

Reasoning:

Ambiguities and temporal interpretation

Philipp Cimiano · Christina Unger

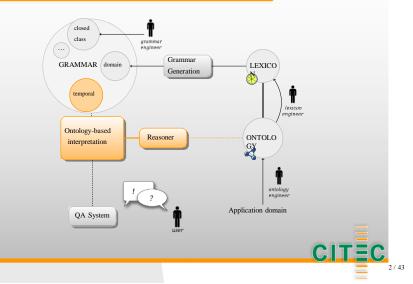
Semantic Computing Group

CITEC, Bielefeld University

Edited by Manuel Fiorelli (fiorelli@info.uniroma2.it)

Universität Bielefeld

ESSLLI 2012 Ontology-based Interpretation of Natural Language


These slides are not the orginal ones produced by prof. Philipp Cimiano.

They have been edited by Manuel Fiorelli (<u>fiorelli@info.uniroma2.it</u>).

Edited by Manuel Fiorelli (fiorelli@info.uniroma2.it)

CITEC

Today

Motivation

I Metonomy

- ^I The FIFA office called this morning.
- ^I Uruguay scored.
- I Anaphora resolution
 - ^I The monkey ate a banana. It was very hungry/tasty.

I Ambiguity

- ^I John deposited his money at the bank.
- ^I The police found a bomb in front of every building.

Outline

Kinds of ambiguities

Representing and resolving ambiguities

Temporal interpretation

Outline

Kinds of ambiguities

Representing and resolving ambiguities

Temporal interpretation

- I alternative lexical meanings
- I structural properties (e.g. modifier/PP attachment sites)
- ^I a combination of both
- I scope ambiguities

- I alternative lexical meanings
 - I bank
 - I New York
- I structural properties (e.g. modifier/PP attachment sites)
- ^I a combination of both
- I scope ambiguities

- I alternative lexical meanings
- I structural properties (e.g. modifier/PP attachment sites)
 - ^I porcelain egg container
 - I old elves and wizards
 - ^I James Bond shot the man with the golden gun.
 - ^I Put the box on the table by the window in the kitchen.
- I a combination of both
- I scope ambiguities

- I alternative lexical meanings
- I structural properties (e.g. modifier/PP attachment sites)
- I a combination of both
 - I He saw her duck.
- I scope ambiguities

Universität Bielefeld

Ambiguities in ontology-based interpretation

Lexical ambiguities in the context of ontology-based interpretation comprise all cases in which a natural language expression does not correspond uniquely to one ontology concept.

- I exclusive alternatives
- I inclusive alternatives

Examples: Exclusive alternatives

- I Give me all goals by de Jong.
 - I soccer:NigeldeJong
 - I soccer:LuukdeJong
- I What is the biggest stadium?
 - I soccer:capacity
 - I soccer:dimensions

Examples: Inclusive alternatives

In some cases the ontology modelling is more fine-grained than the meaning of a natural language expression, i.e. an expression can correspond to several, overlapping ontology concepts that differ extensionally or intensionally.

- I Give me all films starring Jeff Bridges.
 - ^I only including leading roles
 - I also including supporting roles
- I Which stadiums have a capacity greater than 60 000?
 - I soccer:totalCapacity
 - I soccer:seatedCapacity

Example: big refers to size, with respect to capacity or dimension

I The Metalist Stadium is big.

Х

x = soccer:MetalistStadium soccer:capacity(x) > 40 000

CITEC

Example: big refers to size, with respect to capacity or dimension

I The Metalist Stadium is big.

Х

x = soccer:MetalistStadium
soccer:dimensions(x) > 16500

Example: big refers to size, with respect to capacity or dimension

I The Metalist Stadium is big.

Х

x = soccer:MetalistStadium

soccer:dimensions(x) > 16500

Note: Both alternatives lead to a consistent interpretation.

Example: with \rightarrow soccer:team, soccer:match

- I the team with the best players
 - <PlayerRole> soccer:team <Team>
- I the match with the most goals
 - <Goal> soccer:match <Match>

Example: with \rightarrow soccer:team, soccer:match

- I the team with the best players
 - <PlayerRole> soccer:team <Team>
- I the match with the most goals
 - <Goal> soccer:match <Match>

Note: Due to sortal restrictions, only one of the alternatives is admissible.

Quantities of ambiguities

Ambiguities are pervasive.

- I 880 user questions for GeoBase
 - ¹ 1278 occurences of light expressions: is/are, has/have, with, in, of
 - I 151 ocurrences of context-dependent expressions: big, small, major
- I BBC articles about Euro 2012 matches
 - I almost 10% of the words are vague expressions (with, of, for, possessives, etc.)
 - I they occur in 60-80% of all sentences

Outline

Kinds of ambiguities

Representing and resolving ambiguities

Temporal interpretation

Representing ambiguities

When constructing a semantic representation, all possible meaning alternatives have to be considered.

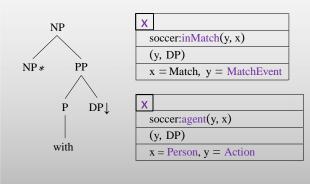
Possible strategies:

I Enumeration: constructing a different semantic representation for every meaning alternative

Representing ambiguities

When constructing a semantic representation, all possible meaning alternatives have to be considered.

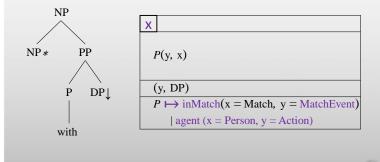
Possible strategies:


- I Enumeration: constructing a different semantic representation for every meaning alternative
- ¹ Underspecification: constructing only one underspecified representation that subsumes all different interpretations (and resolve ambiguities as soon as possible)

Adding sortal restrictions

Example:

- I match with the most goals
- I striker with the most fouls



Representing and resolving ambiguities

CITEC

Adding metavariables

Semantic representations are enriched with metavariables and metavariable specifications that list all possible instantiations of a metavariable given certain sortal restrictions.

Representing and resolving ambiguities

CITEC

Specifying meaning representations

The interpretation process now constructs one underspecified representation that still has to be specified.

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) P(y, x)max(y) $P \mapsto inMatch(x = Match, y = MatchEvent)$ | agent (x = Person, y = Action)

Goal: Resolve metavariables to exactly those interpretations that are possible and consistent.

Specifying meaning representations

The interpretation process now constructs one underspecified representation that still has to be specified.

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) P(y, x)max(y) $P \mapsto inMatch(x = Match, y = MatchEvent)$ | agent (x = Person, y = Action)

Goal: Resolve metavariables to exactly those interpretations that are possible and consistent. ;ontological reasoning

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) P(y, x)max(y) $P \mapsto inMatch (x = Match, y = MatchEvent)$ | agent (x = Person, y = Action)

Check satisfiability of the intersection of x's type information with the sortal restrictions.

 I
 soccer:Match /7 soccer:Match
 true

 I
 soccer:Match /7 soccer:Person
 false

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) P(y, x)max(y) $P \mapsto inMatch (x = Match, y = MatchEvent)$ | agent (x = Person, y = Action)

Check satisfiability of the intersection of y's type information with the sortal restrictions:

false

- I soccer:Goal /7 soccer:MatchEvent true
- I soccer:Goal /7 soccer:Action

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) soccer:match(y, x) max(y)

Check satisfiability of the intersection of y's type information with the sortal restrictions:

false

- I soccer:Goal /7 soccer:MatchEvent true
- I soccer:Goal /7 soccer:Action

Another example

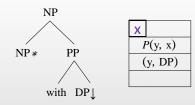
- I Franck Ribery scored a goal.
- I Franck Ribery scored a penalty kick.

See p. 114 of the book

17 / 43

Semantically light expressions

Caveat: Semantically light expressions (with, have,...) are not domain-dependent.


Semantically light expressions

Caveat: Semantically light expressions (with, have,...) are not domain-dependent.

In these cases, we can also assume the most underspecified representation: a metavariable without a metavariable specification.

Metavariables without specification

Strategy for resolving P(x, y):

Search the ontology for relations that admit the type of x (or a superclass) as domain and the type of y (or a superclass) as range.

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) P(y, x)

Instantiating P: Find relations that admit soccer:Goal (or a superclass) as domain, soccer:Match (or a superclass) as range.

Example: the match with the most goals

x, y soccer:Match(x) soccer:Goal(y) soccer:match(y, x)

Instantiating *P*: Find relations that admit soccer:Goal (or a superclass) as domain, soccer:Match (or a superclass) as range.

I <Action> soccer:match <Match>

Quantitative results

Quantitative results on 624 Geobase user questions:

	Total # queries	Avg. # queries	Max. # queries
Enumeration	3180	5.1	96
Reasoning	2100	3.4 (-44%)	24 (-75%)

