
ESSLLI 2012

Ontology-based Interpretation of Natural Language

August 17,

2012

Application:
Ontology-based question answering

Philipp Cimiano · Christina Unger
Semantic Computing Group

CITEC, Bielefeld University

1 / 30

Edited by Manuel Fiorelli (fiorelli@info.uniroma2.it)

ESSLLI 2012

Ontology-based Interpretation of Natural Language

These slides are not the
orginal ones produced by

prof. Philipp Cimiano.

They have been edited by
Manuel Fiorelli

(fiorelli@info.uniroma2.it).

1 / 30

Edited by Manuel Fiorelli (fiorelli@info.uniroma2.it)

mailto:fiorelli@info.uniroma2.it

Today

closed

class

…

Grammar

Generation
GRAMMAR domain LEXICO

N

temporal

Ontology-based

interpretation
Reasoner ONTOLO

GY

Application domain
QA System

2 / 30

Question answering

Question answering is the task of automatically retrieving an answer to

a natural language question.

Who was the first team to win the world championship?

Give me all Polish players from the 90s.

How many hexagons are on a soccer ball?

I

I

I

Sources:

unstructured data (newspaper articles, websites, etc.)

structured data (databases, Linked Data)

I

I

3 / 30

Question answering over RDF data

For a given natural language question, construct a SPARQL query that

retrieves the answers from an RDF repository.

4 / 30

QA over RDF is relevant, because it provides an intuitive interface to data:

• Users express their information need in their own terms;

• Users do not have to know underlying schema, vocabulary or query

language

Example

Which referees arbitrated the game Sweden against France?

↓

1 SELECT?ref WHERE {

2 ?m rdf:type soccer:Match .

3 ?m soccer:team soccer:Sweden .

4 ?m soccer:team soccer:France .

5 ?ref rdf:type Person .

6 ?ref soccer:role ?r .

7 ?r rdf:type soccer:RefereeRole .

8 ?r soccer:match ?m .

9 } ↓

http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#PedroProenca

http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#BertinoMiranda

http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#RicardoSantos

5 / 30

http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#PedroProenca
http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#BertinoMiranda
http://sc.cit-ec.uni-bielefeld.de/esslli2012/soccer#RicardoSantos

Outline

Querying RDF data with

SPARQL

Ontology-based question answering

Other approaches

Outline 6 / 30

Outline

Querying RDF data with

SPARQL

Ontology-based question answering

Other approaches

Querying RDF data with

SPARQL

7 / 30

SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is

a query language for RDF as well as a protocol

the current W3C recommendation

I

I

http://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/sparql11-protocol/

I

I

Querying RDF data with

SPARQL

7 / 30

SPARQL 1.1 Update is an update language for RDF graphs. Its syntax was

derived from the SPARQL RDF Query Language

I the current W3C recommendation
I https://www.w3.org/TR/sparql11-update/

http://www.w3.org/TR/sparql11-query/

SPARQL

SPARQL is based on matching graph patterns against RDF graphs.

Example:

1 ?x rdf:type soccer:Goal .

2 ?x soccer:inGame soccer:Game7324 .

3 ?x soccer:team soccer:Austria .

Variables can be written as ?x or $x, and can occur in subject, predicate and

object position.

Querying RDF data with

SPARQL

8 / 30

Example

Data:

1 soccer:Goal1107 rdf:type soccer:Goal .

2 soccer:Goal1107 soccer:match soccer:Game7324 .

3 soccer:Goal1107 soccer:team soccer:Austria .

Query:

1 SELECT ?x WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 ?x soccer:team soccer:Austria .

5 }

Result:

http://sc.cit-ec.uni-bielefeld.de/ontologies/soccer#Goal1107

Querying RDF data with

SPARQL

9 / 30

http://sc.cit-ec.uni-bielefeld.de/ontologies/soccer#Goal1107

Query types

SELECT queries return variable bindings (mappings from the set

of variables to the set of RDF terms, in SPARQL Query Results

XML Format).

ASK queries return a Boolean value. They test whether or not a

graph pattern has an instantiation.

CONSTRUCT queries return RDF graphs specified by a graph

template.

I

I

I

Querying RDF data with

SPARQL

10 / 30

Simple ASK query

Data:

1 soccer:Goal1107 rdf:type soccer:Goal .

2 soccer:Goal1107 soccer:inGame soccer:Game7324 .

3 soccer:Goal1107 soccer:forTeam soccer:Austria .

Query:

1 ASK WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 ?x soccer:team soccer:Austria .

5 }

Result: true

Querying RDF data with

SPARQL

11 /

30

Filter conditions

Filter conditions restrict variable bindings to those for which the

FILTER expression evaluates to true.

Example:

1 SELECT ?x WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 ?x soccer:atMinute ?m .

5 FILTER (?m < 10)

6 }

Querying RDF data with

SPARQL

12 / 30

Filter conditions

&& !sameTerm(?p,soccer:MarcJanko)7

8 }

Querying RDF data with

SPARQL

13 / 30

Filter conditions can be composed by the Boolean operators && and ||.

Example:

1 SELECT ?x WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 ?x soccer:byPlayer ?p .

5 ?p soccer:name ?name .

6 FILTER (regex(?name,'Janko','i')

Notes on sameTerm (1/2)

Querying RDF data with

SPARQL

13 / 30

xsd:boolean sameTerm (RDF term term1, RDF term

term2)

Returns TRUE if term1 and term2 are the same RDF term as

defined in Resource Description Framework (RDF): Concepts

and Abstract Syntax; returns FALSE otherwise.

xsd:boolean RDF term term1 = RDF term term2

Returns TRUE if term1 and term2 are the same RDF term as

defined in Resource Description Framework (RDF): Concepts

and Abstract Syntax [CONCEPTS]; produces a type error if the

arguments are both literal but are not the same RDF term *;

returns FALSE otherwise.

Notes on sameTerm (2/2)

Querying RDF data with

SPARQL

13 / 30

The behaviour of the operator = allows supplying extensions

that perform the comparison based on the value represented

by the arguments (based on their datatype).

By default, SPARQL interprets plain literals, string, numeric,

boolean and datetime.

The downside is that

«XI»^^my:romanNumeral = «IX»^^my:romanNumeral

«XI»^^my:romanNumeral != «IX»^^my:romanNumeral

Both produces an error; unless it has been loaded an extension

for my:romanNumeral

Alternatively, use sameTerm and !sameTerm

In RDF 1.0, they are literals
without datatype and optionally
with a language tag

Optional graph patterns

Optional graph patterns serve to add information to the answer

where it is available.

If such a pattern does not match, no variable binding is created,

instead of rejecting the whole instantiation.

I

I

Querying RDF data with

SPARQL

14 / 30

Example

Query:

1 SELECT ?x ?y WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 OPTIONAL { ?y rdf:type soccer:PenaltyKick .

?y soccer:leadsTo ?x . }5

6 }

Result:

x

soccer:Goal1042

soccer:Goal1043

soccer:Goal1044

y

soccer:PenaltyKick807

Querying RDF data with

SPARQL

15 / 30

Alternative graph patterns

The construct UNION can be used to build disjunction of graph patterns

so that one of several alternative graph patterns may match. In this

case, all possible instantiations are returned as answer.

Example:

1 SELECT ?x WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:match soccer:Game7324 .

4 ?y soccer:leadsTo ?x .

5 { ?y rdf:type soccer:FreeKick . }

6 UNION

7 { ?y rdf:type soccer:CornerKick . }

8 }

Querying RDF data with

SPARQL

16 / 30

Nesting constructs

Example:

1 SELECT ?x WHERE {

2 ?x soccer:match soccer:Game7324 .

3 ?x rdf:type soccer:Goal .

4 { ?x soccer:atMinute ?m .

5 FILTER (?m >= 80) }

6 UNION

7 { ?y rdf:type soccer:PenaltyKick .

8 ?y soccer:leadsTo ?x .

9 }

10 }

Querying RDF data with

SPARQL

17 / 30

Solution modifiers

I ORDER BY (ASC/DESC)

I PROJECTION

I DISTINCT

I REDUCED

I OFFSET

I LIMIT

Example:

Players that scored a goal (in any match)

1 SELECT ?p WHERE {

2 ?a rdf:type soccer:SoccerAction .

3 ?a soccer:byPlayer ?p .

4 ?a soccer:leadsTo ?g .

5 ?g rdf:type soccer:Goal .

6 }

Querying RDF data with

SPARQL

18 / 30

A player who scored more than one goal is returned multiple
times

Solution modifiers

I ORDER BY (ASC/DESC)

I PROJECTION

I DISTINCT

I REDUCED

I OFFSET

I LIMIT

Example:

Players that scored a goal (in any match)

1 SELECT DISTINCT ?p WHERE {

2 ?a rdf:type soccer:SoccerAction .

3 ?a soccer:byPlayer ?p .

4 ?a soccer:leadsTo ?g .

5 ?g rdf:type soccer:Goal .

6 }

Querying RDF data with

SPARQL

18 / 30

DISTINCT removes duplicate solutions
REDUCED permits that duplicate solutions are eliminated

Solution modifiers

I ORDER BY (ASC/DESC)

I PROJECTION

I DISTINCT

I REDUCED

I OFFSET

I LIMIT

Example:
Players that scored a goal (in any match) ordered by

last and first name. Discard the first ten players and

return at most five of the remaining.

1 SELECT DISTINCT ?p WHERE {

2 ?a rdf:type soccer:SoccerAction .

3 ?a soccer:byPlayer ?p .

3 ?p soccer:lastName ?ln .

4 ?p soccer:firstName ?fn .

5 ?a soccer:leadsTo ?g .

6 ?g rdf:type soccer:Goal .

7 }

8 ORDER BY ASC(?ln) ?fn ?p

9 OFFSET 10

10 LIMIT 5

Querying RDF data with

SPARQL

18 / 30

The combined use of OFFSET and
LIMIT allows to select a “slice” of
the solution sequence. ORDER BY
is necessary to predictably order
the solutions.

ASC is the default

Necessary for a
predictable
order in case of
homonymous
players

Aggregates

Aggregates apply expressions over groups of solutions

By default, all solutions belong to a single group

GROUP BY introduces one or more expressions to group the

solutions

I

I

Example:

Players and the number of goals they scored

1 SELECT ?p (COUNT(?x) as ?c) WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:byPlayer ?p .

4 }

5 GROUP BY ?p

Querying RDF data with

SPARQL

18 / 30

I

A select expression must be a

variable in the GROUP BY or

an aggregate

Aggregates

Aggregates apply expressions over groups of solutions

By default, all solutions belong to a single group

GROUP BY introduces one or more expressions to group the

solutions

I

I

Example:

Players that scored at least five goals

1 SELECT ?p WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:byPlayer ?p .

4 }

5 GROUP BY ?p

6 HAVING COUNT(?x) > 5

Querying RDF data with

SPARQL

18 / 30

I

HAVING introduces one or more constraints on

solution groups. In this context, expressions are

subject to the same constraints as in the

SELECT

Aggregates

Querying RDF data with

SPARQL

19 / 30

Example:

The top 10 players and the number of goals they scored

1 SELECT ?p (COUNT(?x) as ?c) WHERE {

2 ?x rdf:type soccer:Goal .

3 ?x soccer:byPlayer ?p .

4 }

5 GROUP BY ?p

6 ORDER BY DESC(?c)

7 LIMIT 10

Aggregates apply expressions over groups of solutions

By default, all solutions belong to a single group

GROUP BY introduces one or more expressions to group the

solutions

I

I

I

Outline

Querying RDF data with

SPARQL

Ontology-based question answering

Other approaches

Ontology-based question answering 20 / 30

QA system

closed

class

…

Grammar

Generation
GRAMMAR domain LEXICO

N

temporal

Ontology-based

interpretation
Reasoner ONTOLO

GY

Question Query

Query Application domain
QA System

Answer
Result

Ontology-based question answering 20 / 30

In more detail

GRAMMAR

LTAG derived tree

Parser LTAG derivation tree

Underspecified DRS

Ambiguity resolution Reasoner

DRS

Translation to query language

Ontology-based question answering 21 / 30

SPARQL query
Question

Example

Parsing along the lines of the Earley-type parser devised by

Schabes & Joshi (1988) results in an LTAG derivation tree.

S

I

DP↓ VP

V

had

DP↓
DP

DP

NP↓
DE

T
no

goals

NP

gamewhich

Ontology-based question answering 22 / 30

Example

Parsing along the lines of the Earley-type parser devised by

Schabes & Joshi (1988) results in an LTAG derivation tree.

Next, syntactic and semantic composition rules apply in tandem

in order to construct an LTAG derived tree…
S

I

I

DP VP

DET NP V DP

no

goals
gamewhich had

Ontology-based question answering 22 / 30

Example

Parsing along the lines of the Earley-type parser devised by

Schabes & Joshi (1988) results in an LTAG derivation tree.

Next, syntactic and semantic composition rules apply in tandem in

order to construct an LTAG derived tree and a DUDE.

I

I

Ontology-based question answering 22 / 30

P(y, x)

?x

soccer:Match(x)

y

¬ soccer:Goal(y)

Marked discourse referent
introduced by the meaning

representation of Wh-forms

metavariable
originating from the fact that

“Had” denotes an underspecified

relation

Example

Parsing along the lines of the Earley-type parser devised by

Schabes & Joshi (1988) results in an LTAG derivation tree.

Next, syntactic and semantic composition rules apply in tandem in order

to construct an LTAG derived tree and a DUDE. Disambiguation then

yields a Discourse Representation Structure…

I

I

I

Ontology-based question answering 22 / 30

match(y, x)

?x

soccer:Match(x)

y

¬ soccer:Goal(y)

Example

Parsing along the lines of the Earley-type parser devised by

Schabes & Joshi (1988) results in an LTAG derivation tree.

Next, syntactic and semantic composition rules apply in tandem

in order to construct an LTAG derived tree and a DUDE.

Disambiguation then yields a Discourse Representation Structure…

…which is finally translated into a SPARQL query.

I

I

I

I

1 SELECT ?x WHERE {

2 ?x a soccer:Match .

3 optional {

4 ?y a soccer:Goal .

5 ?y soccer:match ?x .

6 }

7 FILTER !BOUND(?y)

8 }

Ontology-based question answering

22 / 30

!BOUND(?y) is true iff ?y is not bound to an RDF

term (i.e. the optional graph pattern did not match)

Implementation of the quantifier

no in a negation-as-failure fashion

Negation-as-failure in SPARQL 1.1

1 SELECT ?x WHERE {

2 ?x a soccer:Match .

3 OPTIONAL {

4 ?y a soccer:Goal .

5 ?y soccer:match ?x .

6 }

7 FILTER !BOUND(?y)

8 }

Ontology-based question answering

22 / 30

1 SELECT ?x WHERE {

2 ?x a soccer:Match .

3 FILTER NOT EXISTS {

4 ?y a soccer:Goal .

5 ?y soccer:match ?x .

6 }

7 }

SPARQL 1.0 SPARQL 1.1

FILTER EXISTS in SPARQL 1.1

Ontology-based question answering

22 / 30

SPARQL 1.0 SPARQL 1.1

FILTER EXISTS {…} tests whether the

given pattern matches. It does not

generate additional bindings.

Players that scored a goal (in

any match)

1 SELECT DISTINCT ?p WHERE {

2 ?a rdf:type soccer:SoccerAction .

3 ?a soccer:byPlayer ?p .

4 ?a soccer:leadsTo ?g .

5 ?g rdf:type soccer:Goal .

6 }

Players that scored a goal (in

any match)

1 SELECT ?p WHERE {

2 ?p rdf:type soccer:Person .

3 FILTER EXISTS {

3 ?a soccer:byPlayer ?p .

4 ?a soccer:leadsTo ?g .

5 ?g rdf:type soccer:Goal .

6 }

7 }

Examples: more than

Which stadium has more than 30,000 seats?

SELECT ?x WHERE {

?x a soccer:Stadium .

?x soccer:capacity ?y .

FILTER (?y > 30000)

}

Which team won more than two games?

SELECT ?x WHERE {

?x a soccer:Team .

?y a soccer:Match .

?y soccer:winner ?x .

}

GROUP BY ?x

HAVING (COUNT(?y) > 2)

Ontology-based question answering

soccer:capacity is a

datatype property

We count the subjects

of the property

soccer:winner

Examples: the most

Which stadium has the most seats?
SELECT ?x WHERE {

?x a soccer:Stadium .

?x soccer:capacity ?y .

}

ORDER BY DESC(?y)

LIMIT 1

Which team won the most games?
SELECT ?x WHERE {

?x a soccer:Team .

?y a soccer:Match .

?y soccer:winner ?x .

}

GROUP BY ?x

ORDER BY DESC(COUNT(?y))

LIMIT 1

Ontology-based question answering

soccer:capacity is a

datatype property

We count the

subjects of the

property

soccer:winner

Pythia

Demo:

I http://greententacle.techfak.uni-bie le feld.de /~cunger/pythia /

Datasets:

Geobase

MusicBrainz

(DBpedia)

I

I

I

Ontology-based question answering 23 / 30

Unger, Christina, and Philipp Cimiano. "Pythia: Compositional meaning

construction for ontology-based question answering on the Semantic Web."

Natural Language Processing and Information Systems. Springer Berlin

Heidelberg, 2011. 153-160.

http://pub.uni-bielefeld.de/download/2278529/2674859

http://greententacle.techfak.uni-bielefeld.de/~cunger/pythia/

Geobase

Geobase (Raymond Mooney et al.) comprises geographical information

about the U.S. …

Classes: s ta te , city, road, mounta in, lake , rive r

Relations: borders , inSta te , flowsThrough, popula tion etc.

I

I

…together with 880 user questions annotated with queries.

How many people live in New Mexico?I

How many states border Alaska?I

What is the largest city in Texas?I

How long is the longest river in California?I

How many cities named Austin are there in the USA?I

Ontology-based question answering 24 / 30

Geobase: original predicates in Prolog

Ontology-based question answering 24 / 30

state(name, abbreviation, capital, population, area,

state_number, city1, city2, city3, city4)

city(state, state_abbreviation, name, population)

river(name, length, [states through which it flows])

border(state, state_abbreviation, [states that border it])

highlow(state, state_abbreviation, highest_point,

highest_elevation, lowest_point, lowest_elevation)

mountain(state, state_abbreviation, name, height)

road(number, [states it passes through])

lake(name, area, [states it is in])

Results

Pythia could process 624 of 865 questions.

Recall: 67 %

Precision: 82 %

I

I

Ontology-based question answering
25 / 30

Pythia has been evaluated on 865 of the 880 questions

originally associated with Geobase.

The 15 discarded questions are out of the scope of the

ontology: e.g. Which rivers do not run through USA?

Remember: the dataset only deals with US geography

Pythia-external failures

Syntactically ill-formed questionsI

What is capital of Iowa?

What are the capital city in Texas?

I

I

Semantically ill-formed questionsI

Which states border the Missouri river?I

Data incompletenessI

highes t_point ≡ location with maximum heightI

Ontology-based question answering 26 / 30

In the ontology, states

only border other states

The dataset explicitly uses highest_point.

Although it is extensionally equivalent to “location with

maximum height”, the absence of data (e.g. the highest

location is not described in the dataset) may cause

erroneous results.

Pythia-internal failures

Incomplete coverage (lexical and structural)I

Of the states washed by the Mississippi river, which has the lowest

point?

How many states have cities or towns named Springfield?

I

I

Non-compositionalityI

How many cities are there in the US?

Which river flows through the most states?

I

I

Ontology-based question answering 27 / 30

DBpedia

DBpedia extracts structured information from

Wikipedia and makes it available as RDF data.

DBpedia ontology:

shallow, cross-domain ontology

manually created based on the

most commonly used infoboxes

within Wikipedia

320+ classes, 1650 properties

I

I

I

http://wiki.dbpedia .org/Ontology

Ontology-based question answering 28 / 30

http://wiki.dbpedia.org/Ontology

Outline

Querying RDF data with

SPARQL

Ontology-based question answering

Other approaches

Other approaches 29 / 30

Other approaches to
question answering over Linked Data

The larger the domain, the less feasible is the manually creation of an

ontology lexicon.

Task:

Map natural language expressions to ontology concepts without a

domain-specific grammar.

Other approaches 29 / 30

Major challenges

Lexical gap: the gap between natural language expressions and

ontology labels.

I

game → soccer:match

victorious → soccer:winner

I

I

Other approaches 30 / 30

Major challenges

Lexical gap: the gap between natural language expressions and

ontology labels.

I

game → soccer:match

victorious → soccer:winner

I

I

Structural gap: the gap between the semantic structure of the

natural language question and the structure of the data

I

Who is the coach of Denmark?I

1 SELECT ?p WHERE {

2 ?p soccer:role ? r .

3 ?r rdf:type soccer:CoachRole .

4 ?r soccer:team soccer:Denmark .

5 }

Other approaches 30 / 30

