
Random Variable

Definition

A random variable X on a sample space Ω is a real-valued
probability function on Ω; that is, X : Ω→ R. A discrete random
variable is a random variable that takes on only a finite or
countably infinite number of values.



Examples:

1 In rolling a dice, the number that comes up is a random
variable.

2 Consider a gambling game in which a player flips two coins, if
he gets head in both coins we wins $3, else he losses $1. The
payoff of the game is a random variable.



Independence

Definition

Two random variables X and Y are independent if and only if

Pr((X = x) ∩ (Y = y)) = Pr(X = x) · Pr(Y = y)

for all values x and y . Similarly, random variables X1, X2, . . . Xk

are mutually independent if and only if for any subset I ⊆ [1, k]
and any values xi ,i ∈ I ,

Pr

(⋂
i∈I

Xi = xi

)
=

∏
i∈I

Pr(Xi = xi ).



Expectation

Definition

The expectation of a discrete random variable X , denoted by
E[X ], is given by

E[X ] =
∑

i

i Pr(X = i),

where the summation is over all values in the range of X . The
expectation is finite if

∑
i |i |Pr(X = i) converges; otherwise, the

expectation is unbounded.

The expectation (or mean or average) is a weighted sum over all
possible values of the random variable.



Examples:

• The expected value of one dice roll is:

E [X ] =
6∑

i=1

iPr(X = i) =
6∑

i=1

i

6
= 3

1

2
.

• The expectation of the random variable X representing the
sum of two dice is

E[X ] =
1

36
· 2 +

2

36
· 3 +

3

36
· 4 + . . .

1

36
· 12 = 7.

• Let X take on the value 2i with probability 1/2i for
i = 1, 2, . . ..

E[X ] =
∞∑
i=1

1

2i
2i =

∞∑
i=1

1 =∞.



Median

Definition

The median of a random variable X is a value m such

Pr(X < m) ≤ 1/2 and Pr(X > m) < 1/2.



Consider a game in which a player chooses a number in [1, ..., 6]
and then rolls 3 dice.
The player wins $1 for each dice the matches the number, he
losses $1 if no dice matches the number.
What is the expected outcome of that game:

−1(
5

6
)3 + 1 · 3(

1

6
)(

5

6
)2 + 2 · 3(

1

6
)2(

5

6
) + 3(

1

6
)3 = − 17

216
.



Linearity of Expectation

Theorem

For any two random variables X and Y

E [X + Y ] = E [X ] + E [Y ].



Proof.

E [X + Y ] =

∑
i∈range(X )

∑
j∈range(Y )

(i + j)Pr((X = i) ∩ (Y = j)) =

∑
i

∑
j

iPr((X = i) ∩ (Y = j))+

∑
j

∑
i

jPr((X = i) ∩ (Y = j)) =

∑
i

iPr(X = i) +
∑

j

jPr(Y = j).

(Since we sum over all possible choices of i (j).)



Lemma

For any constant c and discrete random variable X ,

E[cX ] = cE[X ].

Proof.

The lemma is obvious for c = 0. For c 6= 0,

E[cX ] =
∑

j

j Pr(cX = j)

= c
∑

j

(j/c) Pr(X = j/c)

= c
∑
k

k Pr(X = k)

= cE[X ].



Examples:

• The expectation of the sum of two dice is 7, even if they are
not independent.

• The expectation of the outcome of one dice plus twice the
outcome of a second dice is 101

2 .

• Assume that we flip N coins, what is the expected number of
heads?
Using linearity of expectation we get N · 1

2 .

By direct summation we get
∑N

i=0 i
(N

i

)
2−N .

Thus we prove
N∑

i=0

i

(
N

i

)
2−N =

N

2
.



Assume that N people checked coats in a restaurants. The coats
are mixed and each person gets a random coat.
How many people got their own coats?
It’s hard to compute E [X ] =

∑N
k=0 kPr(X = k). Instead we define

N 0-1 random variables Xi , where Xi = 1 iff i got his coat.

E [Xi ] = 1 · Pr(Xi = 1) + 0 · Pr(Xi = 0) =

Pr(Xi = 1) =
1

N
.

E [X ] =
N∑

i=1

E [Xi ] = 1.



Bernoulli Random Variable

A Bernoulli or an indicator random variable:

Y =

{
1 if the experiment succeeds,
0 otherwise.

E[Y ] = p · 1 + (1− p) · 0 = p = Pr(Y = 1).



Binomial Random Variable

Definition

A binomial random variable X with parameters n and p, denoted
by B(n, p), is defined by the following probability distribution on
j = 0, 1, 2, . . . , n:

Pr(X = j) =

(
n

j

)
pj(1− p)n−j .



Expectation of a Binomial Random Variable

E[X ] =
n∑

j=0

j

(
n

j

)
pj(1− p)n−j

=
n∑

j=0

j
n!

j!(n − j)!
pj(1− p)n−j

=
n∑

j=1

n!

(j − 1)!(n − j)!
pj(1− p)n−j

= np
n∑

j=1

(n − 1)!

(j − 1)!((n − 1)− (j − 1))!
pj−1(1− p)(n−1)−(j−1)

= np
n−1∑
k=0

(n − 1)!

k!((n − 1)− k)!
pk(1− p)(n−1)−k

= np
n−1∑
k=0

(
n − 1

k

)
pk(1− p)(n−1)−k = np.



Using linearity of expectations

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi ] = np.



Quicksort

Procedure Q S(S);
Input: A set S .
Output: The set S in sorted order.

1 Choose a random element y uniformly from S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

3 Return the list:
Q S(S1), y , Q S(S2).



Let T = number of comparisons in a run of QuickSort.

Theorem

E [T ] = O(n log n).



Let s1, ...., sn be the elements of S is sorted order.
For i = 1, ..., n, and j > i , define 0-1 random variable Xi ,j , s.t.
Xi ,j = 1 iff si is compared to sj in the run of the algorithm, else
Xi ,j = 0.
The number of comparisons in running the algorithm is

T =
n∑

i=1

∑
j>i

Xi ,j .

We are interested in E [T ].



What is the probability that Xi ,j = 1?
si is compared to sj iff either si or sj is chosen as a “split item”
before any of the j − i − 1 elements between si and sj are chosen.
Elements are chosen uniformly at random → elements in the set
[si , si+1, ...., sj ] are chosen uniformly at random.

Pr(Xi ,j = 1) =
2

j − i + 1
.

E [Xi ,j ] =
2

j − i + 1
.



E [T ] = E [
n∑

i=1

∑
j>i

Xi ,j ] =

n∑
i=1

∑
j>i

E [Xi ,j ] =
n∑

i=1

∑
j>i

2

j − i + 1
≤

n
n∑

k=1

2

k
≤ 2nHn = n log n + O(n).



A Deterministic QuickSort

Procedure DQ S(S);
Input: A set S .
Output: The set S in sorted order.

1 Let y be the first element in S .

2 Compare all elements of S to y . Let

S1 = {x ∈ S − {y} | x ≤ y}, S2 = {x ∈ S − {y} | x > y}.

(Elements is S1 and S2 are in th same order as in S .)

3 Return the list:

DQ S(S1), y , DQ S(S2).



Probabilistic Analysis of QuickSort

Theorem

The expected run time of DQ S on a random input, uniformly
chosen from all possible permutation of S is O(n log n).

Proof.

Set Xi ,j as before.
If all permutations have equal probability, all permutations of
Si , ...,Sj have equal probability, thus

Pr(Xi ,j) =
2

j − i + 1
.

E [
n∑

i=1

∑
j>i

Xi ,j ] = O(n log n).



Randomized Algorithms:

• Analysis is true for any input.

• The sample space is the space of random choices made by the
algorithm.

• Repeated runs are independent.

Probabilistic Analysis;

• The sample space is the space of all possible inputs.

• If the algorithm is deterministic repeated runs give the same
output.



Algorithm classification

A Monte Carlo Algorithm is a randomized algorithm that may
produce an incorrect solution.
For decision problems: A one-side error Monte Carlo algorithm
errs only one one possible output, otherwise it is a two-side error
algorithm.
A Las Vegas algorithm is a randomized algorithm that always
produces the correct output.
In both types of algorithms the run-time is a random variable.



Compund events:

• A program that has one call to a process S.

• Each call to process S recursively spawns new copies of the
process S, where the number of new copies is a binomial
random variable with parameters n and p.

• These random variables are independent for each call to S.

• What is the expected number of copies of the process S
generated by the program?



Conditional Expectation

Definition

E[Y | Z = z ] =
∑
y

y Pr(Y = y | Z = z),

where the summation is over all y in the range of Y .



Example

We role two dice. X1 be the number that shows on the first die,
X2 be the number on the second die, and X be the sum of the
numbers on the two dice.

E[X | X1 = 2] =
∑
x

x Pr(X = x | X1 = 2) =
8∑

x=3

x · 1

6
=

11

2
.

As another example, consider E[X1 | X = 5].

E[X1 | X = 5] =
4∑

x=1

x Pr(X1 = x | X = 5)

=
4∑

x=1

x
Pr(X1 = x ∩ X = 5)

Pr(X = 5)

=
4∑

x=1

x
1/36

4/36

= 5/2.



Lemma

For any random variables X and Y ,

E[X ] =
∑
y

Pr(Y = y)E [X | Y = y ],

where the sum is over all values in the range of Y .



Proof.

∑
y

Pr(Y = y)E [X | Y = y ]

=
∑
y

Pr(Y = y)
∑
x

x Pr(X = x | Y = y)

=
∑
x

∑
y

x Pr(X = x | Y = y) Pr(Y = y)

=
∑
x

∑
y

x Pr(X = x ∩ Y = y)

=
∑
x

x Pr(X = x) = E[X ].



Conditional Expectation as a Random variable

Definition

The expression E[Y | Z ] is a random variable f (Z ) that takes on
the value E[Y | Z = z ] when Z = z .

Consider the outcome of rolling two dice X1, X2, X = X1 + X2.

E[X | X1] =
∑
x

x Pr(X = x | X1) =

X1+6∑
x=X1+1

x · 1

6
= X1 +

7

2
.



If E[Y | Z ] is a random variable, it has an expectation.

Theorem

E[Y ] = E[E[Y | Z ]].

E[X | X1] = X1 +
7

2
.

Thus

E[E[X | X1]] = E

[
X1 +

7

2

]
=

7

2
+

7

2
= 7.



Proof.

E[Y | Z ] = f (Z ), where f (Z ) takes on the value E[Y | Z = z ]
when Z = z .

E[E[Y | Z ]] =
∑

z

E[Y | Z = z ] Pr(Z = z)

=
∑

z

(∑
y

y Pr(Y = y | Z = z)

)
Pr(Z = z)

=
∑

z

∑
y

y Pr(Y = y | Z = z) Pr(Z = z)

=
∑

z

∑
y

y Pr(Y = y ∩ Z = z)

=
∑
y

y
∑

z

Pr(Y = y ∩ Z = z)

=
∑
y

y Pr(Y = y) = E[Y ].



Back to the Spawning Process

• The initial process S is in generation 0.

• A process S is in generation i if it was spawned by another
process S in generation i − 1.

• Let Yi denote the number of S processes in generation i .

• Y0 = 1, and Y1 has a binomial distribution.

•
E[Y1] = np.



• Z i−1
k = number of copies spawned by the kth process

spawned in the (i − 1)-st generation.

• Z i−1
k is a binomial random variable with parameters n and p.

•

E[Yi | Yi−1 = yi−1] = E

[yi−1∑
k=1

Zk

]

=

yi−1∑
k=1

E[Zk ]

= yi−1np.



•
E [Yi ] = E [E [Yi | Yi−1]] = E [Yi−1np] = npE [Yi−1].

• By induction on i , and using Y0 = 1,

E [Yi ] = (np)i .

•
E [
∑
i≥0

Yi ] =
∑
i≥0

E [Yi ] =
∑
i≥0

(np)i .

• If np ≥ 1, the expectation is unbounded, and if np < 1, the
expectation is 1/(1− np).



The Geometric Distribution

Definition

A geometric random variable X with parameter p is given by the
following probability distribution on n = 1, 2, . . ..

Pr(X = n) = (1− p)n−1p.



memoryless property

Lemma

For a geometric random variable with parameter p and n > 0,

Pr(X = n + k | X > k) = Pr(X = n).

Proof.

Pr(X = n + k | X > k) =
Pr((X = n + k) ∩ (X > k))

Pr(X > k)

=
Pr(X = n + k)

Pr(X > k)
=

(1− p)n+k−1p∑∞
i=k(1− p)ip

=
(1− p)n+k−1p

(1− p)k
= (1− p)n−1p

= Pr(X = n).



Lemma

Let X be a discrete random variable that takes on only
non-negative integer values. Then

E[X ] =
∞∑
i=1

Pr(X ≥ i).

Proof.

∞∑
i=1

Pr(X ≥ i) =
∞∑
i=1

∞∑
j=i

Pr(X = j)

=
∞∑
j=1

j∑
i=1

Pr(X = j)

=
∞∑
j=1

j Pr(X = j) = E[X ].

The interchange of (possibly) infinite summations is justified,
because the terms being summed are all non-negative.



For a geometric random variable X with parameter p,

Pr(X ≥ i) =
∞∑
n=i

(1− p)n−1p = (1− p)i−1.

E[X ] =
∞∑
i=1

Pr(X ≥ i)

=
∞∑
i=1

(1− p)i−1

=
1

1− (1− p)

=
1

p



Alternative Proof

Y = 1 if X = 1, else Y = 0.

E[X ] = Pr(Y = 0)E[X | Y = 0] + Pr(Y = 1)E[X | Y = 1]

= (1− p)E[X | Y = 0] + pE[X | Y = 1].

When X > 1, let Z = X − 1.

E[X ] = (1− p)E[Z + 1] + p · 1 = (1− p)E[Z ] + 1,

By the memoryless property Z is also a geometric random variable
with parameter p. Hence E[Z ] = E[X ].

E[X ] = (1− p)E[Z ] + 1 = (1− p)E[X ] + 1,

which yields E[X ] = 1/p.



Example: Coupon Collector’s Problem

Suppose that each box of cereal contains a random coupon from a
set of n different coupons.
How many boxes of cereal do you need to buy before you obtain at
least one of every type of coupon?
Let X be the number of boxes bought until at least one of every
type of coupon is obtained.
Let Xi be the number of boxes bought while you had exactly i − 1
different coupon.

X =
n∑

i=1

Xi

.
Xi is a geometric random variable with parameter

pi = 1− i − 1

n
.



E[Xi ] =
1

pi
=

n

n − i + 1
.

E[X ] = E

[
n∑

i=1

Xi

]

=
n∑

i=1

E[Xi ]

=
n∑

i=1

n

n − i + 1

= n
n∑

i=1

1

i
= n ln n + Θ(n).


