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“It is remarkable that this science, which originated
in the consideration of games and chances, should
have become the most important object of human
knowledge... The most important questions of life
are, for the most part, really only problems of
probability”

Pierre Simons, Marquis de Laplace
(1749–1827).



Why Probability in Computing?

• Almost any advance computer application today has some
randomization/statistical components:

• Network security
• Cryptography
• Web search and Web advertising
• Spam filtering
• Recommendation systems Amazon, Netfix,..
• Machine learning
• Communication protocols
• Computational finance
• System biology
• DNA sequencing



Probability and Computing

• Randomized algorithms - random steps help!

• Probabilistic analysis of algorithms - average case, almost
always case, worst case.

• Statistical inference - Machine learning, data mining...



Course Outline

• Basic (discrete) probability theory, moments, tail bounds.

• Randomized algorithms, probabilistic analysis, average and
almost sure performance.

• Applications: sorting, selection, routing, graph algorithms,...

• Random walks - Markov chains.

• The Monte-Carlo method.

• Continuous random variables, uniform, exponential, Poisson
process.

• Point and interval estimate, hypothesis testing.

•



Textbook

Mitzenmacher and Upfal:
Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge Press 2005.



Course Web Site:
http://www.cs.brown.edu/courses/cs155/

• Homework assignment will be posted on the web site.

• Newsgroup.

• Class slides(?)



Homework:

• Weekly (bi-weekly) assignments.

• Typeset in Latex.

• Concise and correct proofs.

• Work must be submitted on time.

• Optional 200 level credit.



Verifying Polynomial Identities

Problem: Verify that P(x) ≡ Q(x).
Example: Check if

(x + 1)(x − 2)(x + 3)(x − 4)(x + 5)(x − 6) ≡ x6 − 7x3 + 25.

We use ≡ for polynomial identities, = for numerical equality.
P(x) ≡ Q(x) iff for any value r ∈ R, P(r) = Q(r).



Deterministic solution:

H(x) ≡ (x + 1)(x − 2)(x + 3)(x − 4)(x + 5)(x − 6)

G (x) ≡ x6 − 7x3 + 25.

Transform H(x) to a ”canonical” form

H(x) ≡
6∑

i=0

cix
i

H(x) ≡ G (x) iff the coefficients of all monomials are equal.



A Randomized Solution:

1 Choose a random integer r in the range [1, ....., 600].

2 Compute H(r) and G (r).

3 If H(r) = G (r) then output CORRECT else output FALSE.



Randomized Algorithm

We augment the standard RAM operations with a new operation:
Choose a random number uniformly from the set
{a1, a2, ..., ak}.
We assume that this operation takes 1 step.

The output (might) depend on the choice of r , thus it is a random
variable.
What is the “chance” that the algorithm actually gives the
correct answer???



H(x) ≡ (x + 1)(x − 2)(x + 3)(x − 4)(x + 5)(x − 6)

G (x) ≡ x6 − 7x3 + 25.

Assume r = 2
H(2) = 3× 0× 5×−2× 7×−4 = 0.
G (2) = 26 − 723 + 25 = 64− 56 + 25 = 33.
Since H(2) 6= G (2) we proved that H(x) 6≡ G (x).



What happens if we have equality?

Example 1: Check if (x + 1)(x − 1) ≡ x2 − 1.
Since the two sides of the equation are identical - any number that
we try would give equality.

Is this algorithm always correct?



Example 2: Check if x2 + 7x + 1 = (x + 2)2.
If we try r = 2 we get

LHS = 4 + 14 + 1 = 19, RHS = 42 = 16

showing that the two sides are not identical.

But for r = 1 we get equality:

1 + 7 + 1 = (1 + 2)2 = 9.

A bad choice of r may lead to a wrong answer!

How many of the possible choices or r are bad?



Some Algebra

Assume that G (x) 6≡ H(x), and that the sum of the degrees of x
in H and G is bounded by d .
F (x) ≡ G (x)− H(x) is a polynomial in one variable of degree
bounded by d .

Theorem

If
F (x) = G (x)− H(x) 6≡ 0

then the equation

F (x) = G (x)− H(x) = 0

has no more than d roots (solutions).



Analysis of the Algorithm

If the identity is correct, the algorithm always outputs a correct
answer.
If the identity is NOT correct, the algorithm outputs the WRONG
answer only if we randomly picked r which is a root of the
polynomial F (x) = G (x)− H(x) = 0.
If we choose r in the range [1, ..., 100d ], the ”chance” of returning
a wrong answer is no more than 1%.

A randomized technique gives a significantly simpler algorithm - at
a cost of a small probability of error.



Getting an arbitrary small error probability

We can reduce the “error probability” at the expense of increasing
the run-time of the algorithm:

1 Run the algorithm 10 times.

2 Output “CORRECT” if got “CORRECT” in all the 10 runs.

If the new algorithm outputs “CORRECT” The “chance” that
G (x) 6≡ H(x) is less than 10−20 < 2−64.



Probability Space

Definition

A probability space has three components:

1 A sample space Ω, which is the set of all possible outcomes
of the random process modeled by the probability space;

2 A family of sets F representing the allowable events, where
each set in F is a subset of the sample space Ω;

3 A probability function Pr : F → R, satisfying the definition
below.

In a discrete probability space the we use F = 2Ω.



Probability Function

Definition

A probability function is any function Pr : F → R that satisfies
the following conditions:

1 For any event E , 0 ≤ Pr(E ) ≤ 1;

2 Pr(Ω) = 1;

3 For any finite or countably infinite sequence of pairwise
mutually disjoint events E1, E2, E3, . . .

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr(Ei ).

The probability of an event is the sum of the probabilities of its
simple events.



Examples:

Consider the random process defined by the outcome of rolling a
dice.

S = {1, 2, 3, 4, 5, 6}

We assume that all “facets” have equal probability, thus

Pr(1) = Pr(2) = ....Pr(6) = 1/6.

The probability of the event “odd outcome”

= Pr({1, 3, 5}) = 1/2



Assume that we roll two dice:
S = all ordered pairs {(i , j), 1 ≤ i , j ≤ 6}.
We assume that each (ordered) combination has probability 1/36.
Probability of the event “sum = 2” =

Pr((1, 1)) = 1/36.

Probability of the event “sum = 3”

Pr({(1, 2), (2, 1)}) = 2/36.



Let E1 = “sum bounded by 6”,

E1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),

(2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5, 1)}

Pr(E1) = 15/36

Let E2 = “both dice have odd numbers”, Pr(E2) = 1/4.

Pr(E1 ∩ E2) =

Pr({(1, 1), (1, 3), (1, 5), (3, 1), (3, 3), (5, 1)}) =

6/36 = 1/6.



Back to the Polynomial Identity Checking
Algorithms

• A simple event = a choice of r .

• Sample Space = all integers in [1, ..., 100d ].

• We assume that all integers in the range have equal
probability, thus the probability of a simple event r is
Pr(r) = 1

100d .

• The “bad” events: choosing a root of the polynomial. There
are no more than d simple events in the bad event.

• Pr(“bad” event) ≤ d
100d .



Assume that we repeat the algorithm k times:

• If any iteration returns FALSE output FALSE, else output
CORRECT.

• A simple event = A sequence of k choices r1, ...., rk .

• The sample space = All sequences of r numbers in the range
[1, ..., 100d ].

• The probability of a simple event = ( 1
100d )k .

• The bad event = all k choices are roots of the polynomial,
there are no more than dk such simple events.

• Probability of the bad event ≤ dk( 1
100d )k .



Independent Events

Definition

Two events E and F are independent if and only if

Pr(E ∩ F ) = Pr(E ) · Pr(F ).

More generally, events E1, E2, . . . Ek are mutually independent if
and only if for any subset I ⊆ [1, k],

Pr

(⋂
i∈I

Ei

)
=

∏
i∈I

Pr(Ei ).



• The probability of picking a root in one round is ≤ d
100d .

• The events in different round are independent

• The probability of picking roots in k successive independent
rounds ≤ ( d

100d )k .



Conditional Probability

What is the probability that a student at Brown was born in
Providence.
E1 = the event ”born in Providence”.
E2 = the event ”a student in Brown”.
The conditional probability that a student at Brown was born in
Providence is denoted

Pr(E1 | E2).



Computing Conditional Probabilities

Definition

The conditional probability that event E occurs given that event
F occurs is

Pr(E | F ) =
Pr(E ∩ F )

Pr(F )
.

The conditional probability is only well-defined if Pr(F ) > 0.

By conditioning on F we restrict the sample space to the set F .
Thus we are interested in Pr(E ∩ F ) “normalized” by Pr(F ).



Example

What is the probability that in rolling two dice the sum is 8 given
that the sum was even?
E1 = “sum is 8”,

Pr(E1) = Pr((2, 6), (3, 5), (4, 4), (5, 3), (6, 2)) = 5/36

E2 = “sum even”,
Pr(E2) = 1/2 = 18/36.

Pr(E1 | E2) = Pr(E1∩E2)
Pr(E2) = 5/36

1/2 = 5/18.



Example - a posteriori probability

We are given 2 coins. One is a fair coin A, the other coin, B, has
head on both sides B.
We choose a coin at random, i.e. each coin is chosen with
probability 1/2.
Given that we got head, what is the probability that we chose the
fair coin A???



Define a sample space of ordered pairs (coin, outcome).
The sample space has three points

{(A, h), (A, t), (B, h)}

Pr((A, h)) = Pr((A, t)) = 1/4

Pr((B, h)) = 1/2

Define two events:
E1 = “Chose coin A”.
E2 = “Outcome is head”.

Pr(E1 | E2) =
Pr(E1 ∩ E2)

Pr(E2)
=

1/4

1/4 + 1/2
= 1/3.



Useful identities:

Pr(A | B) =
Pr(A ∩ B)

Pr(B)

Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(A ∩ B ∩ C ) = Pr(A | B ∩ C )Pr(B ∩ C )

= Pr(A | B ∩ C )Pr(B | C )Pr(C )

Let A1, ....,An be a sequence of events. Let Ei =
⋂i

j=1 Ai

Pr(En) = Pr(An | En−1)Pr(En−1) =

Pr(An | En−1)Pr(An−1 | En−2)....P(A2 | E1)Pr(A1)



Independence

Two events A and B are independent if

Pr(A ∩ B) = Pr(A)× Pr(B),

or

Pr(A | B) =
Pr(A ∩ B)

Pr(B)
= Pr(A).



Independent events do not have to be related to independent
physical processes.
Example: the probability that the outcome of a dice roll is even
(= 3

6 ) is independent of the event ”the outcome is ≤ 4”(= 4
6 ).

The probability of ”an even outcome ≤ 4” is

2

6
=

12

36
=

3

6
· 4

6

The ”intuition” here is that there are the same number of odd and
even outcomes that are ≤ 4. Thus, the ”information” that the
outcome is ≤ 4 does not ”help” in deciding if it is odd or even.



Example

A family has two children:
1. Given that the first child is a girl, what is the probability that
the second child is a girl? - 1

2 .
2. Given that one of the children is a girl, what is the probability
that the other child is a girl?



A - “at least one child is a girl”
B - “both children are girls”

Prob(A) = 1− (
1

2
)2 =

3

4

Prob(B) =
1

4

Prob(B | A) =
Pr(A ∩ B)

Pr(A)
=

1/4

3/4
=

1

3



Verifying Matrix Multiplication

Given three n × n matrices A, B, and C in a Boolean field, we
want to verify

AB = C.

Standard method: Matrix multiplication - takes Θ(n3) (Θ(n2.37))
operations.



Randomized algorithm:

1 Chooses a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n.

2 Compute Br̄ ;

3 Compute A(Br̄);

4 Computes Cr̄ ;

5 If A(Br̄) 6= Cr̄ return AB 6= C, else return AB = C.

The algorithm takes Θ(n2) time.

Theorem

If AB 6= C, and r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤ 1

2
.



Lemma

Choosing r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n uniformly at random is
equivalent to choosing each ri independently and uniformly from
{0, 1}.

Proof.

If each ri is chosen independently and uniformly at random, each
of the 2n possible vectors r̄ is chosen with probability 2−n, giving
the lemma.



Proof:

Let D = AB− C 6= 0.
ABr̄ = Cr̄ implies that Dr̄ = 0.
Since D 6= 0 it has some non-zero entry; assume d11.
For Dr̄ = 0, it must be the case that

n∑
j=1

d1j rj = 0,

or equivalently

r1 = −
∑n

j=2 d1j rj

d11
. (1)

Here we use d11 6= 0.



Principle of Deferred Decision

Assume that we fixed r2, . . . , rn.
The RHS is already determined, the only variable is r1.

r1 = −
∑n

j=2 d1j rj

d11
. (2)

Probability that r1 = RHS is no more than 1/2.



More formally, summing over all collections of values
(x2, x3, x4, . . . , xn) ∈ {0, 1}n−1, we have

Pr(ABr̄ = Cr̄)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr (ABr̄ = Cr̄ | (r2, . . . , rn) = (x2, . . . , xn))

· Pr ((r2, . . . , rn) = (x2, . . . , xn))

=
∑

(x2,...,xn)∈{0,1}n−1

Pr ((ABr̄ = Cr̄) ∩ ((r2, . . . , rn) = (x2, . . . , xn)))

≤
∑

(x2,...,xn)∈{0,1}n−1

Pr

((
r1 = −

∑n
j=2 d1j rj

d11

)
∩ ((r2, . . . , rn) = (x2, . . . , xn))

)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr

(
r1 = −

∑n
j=2 d1j rj

d11

)
· Pr ((r2, . . . , rn) = (x2, . . . , xn))

≤
∑

(x2,...,xn)∈{0,1}n−1

1

2
Pr((r2, . . . , rn) = (x2, . . . , xn))

=
1

2
.



Theorem (Law of Total Probability)

Let E1, E2, . . . ,En be mutually disjoint events in the sample space
Ω, and ∪n

i=1Ei = Ω, then

Pr(B) =
n∑

i=1

Pr(B ∩ Ei ) =
n∑

i=1

Pr(B | Ei ) Pr(Ei ).

Proof.

Since the events B ∩ Ei , i = 1, . . . , n are disjoint and cover the
entire sample space Ω,

Pr(B) =
n∑

i=1

Pr(B ∩ Ei ) =
n∑

i=1

Pr(B | Ei ) Pr(Ei ).



Bayes’ Law

Theorem (Bayes’ Law)

Assume that E1, E2, . . . ,En are mutually disjoint sets such that
∪n

i=1Ei = E, then

Pr(Ej | B) =
Pr(Ej ∩ B)

Pr(B)
=

Pr(B | Ej) Pr(Ej)∑n
i=1 Pr(B | Ei ) Pr(Ei )

.



Application: Finding a Biased Coin

• We are given three coins, two of the coins are fair and the
third coin is biased, landing heads with probability 2/3. We
need to identify the biased coin.

• We flip each of the coins. The first and second coins come up
heads, and the third comes up tails.

• What is the probability that the first coin is the biased one?



Let Ei be the event that the i-th coin flipped is the biased one, and
let B be the event that the three coin flips came up heads, heads,
and tails.
Before we flip the coins we have Pr(Ei ) = 1/3 for i = 1, . . . , 3, thus

Pr(B | E1) = Pr(B | E2) =
2

3
· 1

2
· 1

2
=

1

6
,

and

Pr(B | E3) =
1

2
· 1

2
· 1

3
=

1

12
.

Applying Bayes’ law we have

Pr(E ′1 | B) =
Pr(B | E1) Pr(E1)∑3
i=1 Pr(B | Ei ) Pr(Ei )

=
2

5
.

The outcome of the three coin flips increases the probability that
the first coin is the biased one from 1/3 to 2/5.



Bayesian approach

A test shows that a machine is working correctly. The test has
10% error rate. What is the probability that the machine is
functioning correctly.
A - test result positive.
B - machine is working correctly.

Pr(B |A) =
Pr(B ∩ A)

Pr(A)
=

Pr(B ∩ A)

Pr(A | B)Pr(B) + Pr(A | B̄)Pr(B̄)

What is Pr(B)?



Bayesian approach

• Start with an prior model, giving some initial value to the
model parameters.

• This model is then modified, by incorporating new
observations, to obtain a posterior model that captures the
new information.



Bayesian approach

A test shows that a machine is working correctly. The test has
10% error rate. What is the probability that the machine is
functioning correctly.
A - test result positive.
B - machine is working correctly.

Pr(B |A) =
Pr(B ∩ A)

Pr(A)
=

Pr(B ∩ A)

Pr(A | B)Pr(B) + Pr(A | B̄)Pr(B̄)

What is Pr(B)? Without any prior knowledge we set
Pr(B) = Pr(B̄) = 1/2.

Pr(B |A) =
1
2

9
10

1
2

9
10 + 1

2
1

10

=
9

10

This estimate is dominates by the reliability of the test. Can we do
better?



Assume that we know that this machine fails only 1/5 of the time.
We set Pr(B) = 4/5.

Pr(B |A) =
Pr(B ∩ A)

Pr(A)
=

Pr(B ∩ A)

Pr(A | B)Pr(B) + Pr(A | B̄)Pr(B̄)

=
4
5

9
10

4
5

9
10 + 1

5
1

10

=
36

37
≈ 0.97%



Example: randomized matrix multiplication test

• We want to evaluate the increase in confidence through
repeated tests.

• If we have no information about the process that generated
the identity, a reasonable prior assumption is that the identity
is correct with probability 1/2.

• If we run the randomized test once and it returns that the
matrix identity is correct, how does it change our confidence
in the identity?



E - the identity is correct
B the test returns that the identity is correct.
We start with Pr(E ) = Pr(Ē ) = 1/2, and since the test has a one
side error bounded by 1/2, we have Pr(B | E ) = 1, and
Pr(B | Ē ) ≤ 1/2.
Applying Bayes’ law we have

Pr(E ′ | B) =
Pr(B | E ) Pr(E )

Pr(B | E ) Pr(E ) + Pr(B | Ē ) Pr(Ē )

≥ 1/2

1/2 + 1/2 · 1/2
= 2/3.



• Assume now that we run the randomized test again and it
again returns that the identity is correct.

• After the first test, the prior model was revised, so
Pr(E ) ≥ 2/3, and Pr(Ē ) ≤ 1/3.

• Pr(B | E ) = 1 and Pr(B | Ē ) ≤ 1/2.

Applying Bayes’ law we have

Pr(E ′ | B) ≥ 2/3

2/3 + 1/3 · 1/2
= 4/5.



In general, if before running the test our prior model is that
Pr(E ) ≥ 2i/(2i + 1), and the test returns that the identity is
correct (event B), then

Pr(E ′ | B) ≥
2i

2i +1

2i

2i +1
+ 1

2
1

2i +1

=
2i+1

2i+1 + 1
= 1− 1

2i + 1
.

Thus, if all 100 calls to the matrix identity test return that the
identity is correct, then our confidence in the correctness of this
identity is at least 1− 1

2100+1
.



Counterintuitive?

• 1/1000 of tourists who visit tropical country X return with a
dangerous virus Y .

• There is a test to check for the virus. The test has 5% false
positive rate and no false negative error.

• You returned from country X , took the test, and it was
positive. Should you take the painful treatment for the virus?

• A - has the virus. B - positive in the test.

Pr(A | B) =
1

1000
1

1000 + 999
1000

5
100

=
20

1019
≈ 2%

Explanation: Out of 1000 tourist, 1 will have the virus and
another 50 will be false positive in the test.



Min-Cut Algorithm

Input: An n-node graph G .
Output: A minimal set of edges that disconnects the graph.

1 Repeat n − 2 times:
1 Pick an edge uniformly at random.
2 Contract the two vertices connected by that edge, eliminate all

edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.



Theorem

The algorithm outputs a min-cut set of edges with probability
≥ 1

n(n−1) .

Lemma

Vertex contraction does not reduce the size of the min-cut set.
(Contraction can only increase the size of the min-cut set.)

Proof.

Every cut set in the new graph is a cut set in the original
graph.

Corollary

The algorithm outputs a set that is never smaller than the min-cut
set of the graph.



Analysis of the Algorithm

Assume that the graph has a min-cut set of k edges.
We compute the probability of finding one such set C .

Lemma

If the edge contracted does not belong to C, no other edge
eliminated in that step belongs to C.

Proof.

A contraction eliminates a set of parallel edges (edges connecting
one pair of vertices).
Parallel edges either all belong, or don’t belong to C .



Let Ei = ”the edge contracted in iteration i is not in C .”
Let Fi = ∩i

j=1Ej = “no edge of C was contracted in the first i
iterations”.
We need to compute Pr(Fn−2)



Since the minimum cut-set has k edges, all vertices have degree
≥ k, and the graph has ≥ nk/2 edges.
There are at least nk/2 edges in the graph, k edges are in C .
Pr(E1) = Pr(F1) ≥ 1− 2k

nk = 1− 2
n .



Assume that the first contraction did not eliminate an edge of C
(conditioning on the event E1 = F1).
After the first vertex contraction we are left with an n − 1 node
graph, with minimum cut set, and minimum degree ≥ k .
The new graph has at least k(n − 1)/2 edges.
Pr(E2 | F1) ≥ 1− k

k(n−1)/2 ≥ 1− 2
n−1 .

Similarly,
Pr(Ei | Fi−1) ≥ 1− k

k(n−i+1)/2 = 1− 2
n−i+1 .



We need to compute
Pr(Fn−2)

We use
Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(Fn−2) =

Pr(En−2 ∩ Fn−3) = Pr(En−2 | Fn−3)Pr(Fn−3) =

Pr(En−2 | Fn−3)Pr(En−3 | Fn−4)....Pr(E2 | F1)Pr(F1) ≥

≥ Πn−2
i=1 (1− 2

n − i + 1
) = Πn−2

i=1 (
n − i − 1

n − i + 1
)

= (
n − 2

n
)(

n − 3

n − 1
)(

n − 4

n − 2
)...(

4

6
)(

3

5
)(

2

4
)(

1

3
) =

2

n(n − 1)
.



Useful identities:

Pr(A | B) =
Pr(A ∩ B)

Pr(B)

Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(A ∩ B ∩ C ) = Pr(A | B ∩ C )Pr(B ∩ C )

= Pr(A | B ∩ C )Pr(B | C )Pr(C )

Let A1, ....,An be a sequence of events. Let Ei =
⋂i

j=1 Ai

Pr(En) = Pr(An | En−1)Pr(En−1) =

Pr(An | En−1)Pr(An−1 | En−2)....P(A2 | E1)Pr(A1)



Theorem

Assume that we run the randomized min-cut algorithm
n(n − 1) log n times and output the minimum size cut-set found in
all the iterations. The probability that the output is not a min-cut
set is bounded by

(1− 2

n(n − 1)
)n(n−1) log n ≤ e−2 log n =

1

n2
.

Proof.

The algorithm has a one side error: the output is never smaller
than the min-cut value.



The Taylor series expansion of e−x gives

e−x = 1− x +
x2

2!
− ......

Thus, for x < 1,

1− x ≤ e−x .


