
L. Vigliano

 Database Evolution

DB NoSQL
Linked Open Data

L. Vigliano

 NoSQL Database
Requirements and features

•  Large volumes of data…..increasing
•  No regular data structure to manage

•  Relatively homogeneous elements among

them (no correlation between them)
•  Simple types of operation

L. Vigliano

 NoSQL Database
 Needs and characteristics

•  Example : Twitter (set of users who publish
tweets)

•  Few collections of interest(two entities : users and

tweets), but massive
•  Few operations (insert/update user, insert tweet)
•  Data identified by a key, but only partially

structured

L. Vigliano

NoSQL Database
 Needs and characteristics

• èè manage not strictly structured objects

• èè manage data scalability.

• èè offer only some of the features of
traditional systems

• èèè èèè NoSQL Systems
 (Not only SQL)

L. Vigliano

NoSQL Database
 Needs and characteristics
“One size does not fit all”

•  Great scalability (many processors, horizontal data
partitioning, distributed architecture at low cost)

•  High availability, Replication and Eventual
Consistency

•  High Performance Data Access

L. Vigliano

NoSQL Database
 Needs and characteristics
“One size does not fit all”(2)

•  Replication
– Master-Slave Replication
– Master-Master Replication

•  Scalability
– Sharding Files
– High performance to Data Access

L. Vigliano

NoSQL Database
 Needs and characteristics
“One size does not fit all”(3)

•  Relational model as a base, but it’s not enough
•  Not requiring a schema
•  Adaptability to different application scenarios
•  Languages for semistructured data : JSON, XML
•  Less powerful Query languages (CRUD or

SCRUD operations)

L. Vigliano

 NoSQL Database
Transactional ? No, thanks

No ACID but BASE (Basically Available,
Soft state, Eventually consistent)

•  CAP Theorem : ‘In a distributed system is

not possible to guarantee simultaneously:
consistency, availability, partition
tolerance’

L. Vigliano

 NoSQL Database
Categories/Families

each category is based on a specific data
organization

1.  Key-value system
2.  Document Store
3.  Column-based store
4.  Graph database
5. Other….

L. Vigliano

 NoSQL Database
 Key-value

•  The data are key-value pairs defined by the

program (databases without diagram).
•  The design of objects is transparent to the

system and chosen by the application that
accesses them

•  Eg. Oracle NoSQL, DynamoDB by Amazon
(Voldemort).

L. Vigliano

NoSQL Database
 Document Store

•  Objects have a complex structure (documents)
even if they are organized in collections. JSON
format.

•  Secondary indexes are not predefined and have
no type

•  Eg. MongoDB and CoachDB.

L. Vigliano

NoSQL Database
 Column-based or Extensible record

store

•  Collections (tables) with no predefined structure,

except for a first structure of 'families', or groups
of columns.

•  They can be nested.

•  Eg. Big Table (Google), Hbase and HyperTable
(Open Source).

L. Vigliano

NoSQL Database
 Column-based and Key-value

based

•  NoSQL system that uses concepts from both

key-value stores and column-based systems.

•  Eg. Apache Cassandra by Facebook.

L. Vigliano

NoSQL Database
 Graph Database

•  Database that fit all the data that can be
efficiently represented as graphs, even
large.

•  Eg.Neo4J or GraphBase for network
topologies and traffic connections

L. Vigliano

NoSQL Database
 Hybrid NoSQL Systems

•  Combined concepts from many of the
catogories discuss above.

•  Eg. OrientDB

L. Vigliano

NoSQL Database
 other NoSQL Systems

•  Based on object model or on native XML
model.

•  No high performance and replication.

•  Eg. XML

L. Vigliano

 NoSQL Database
Categories/Families
Data organization - Summary

1.  Key-value Store

 value of the key - record, object, document or more complex
structure

2.  Document Store
 document id - Json

3.  Column-based store
 Column families file - vertical partitioning

4.  Graph database
 Graphs - Path expression

5. Other….

L. Vigliano

NoSQL Database
 MongoDB - goals

JSON documents gathered in collections

•  High performance.
•  High scalability.
•  High reliability.
•  Provide a simple set but full of features.

L. Vigliano

NoSQL Database
 MongoDB - Data Model

Documents stored in collections (BSON
format)

dbcreateCollection (“project”,{capped:true, size:

1310720, max:500})
dbcreateCollection (“worker”,{capped:true, size:

5242880, max:2000})

Only a field - Object_id
Does not have a schema………..

L. Vigliano

NoSQL Database
 MongoDB - Data Structure(1)

Denormalized document
{_id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”,
 Workers: [

 { Ename:”John Smith”,
 Hours:32.5
 },
 { Ename:”Joice English”,
 Hours:20.0
 }
]

};

L. Vigliano

NoSQL Database
 MongoDB - Data Structure(2)
Embedded array of document references

{_id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”,
 WorkersId: [“W1”,”W2”] }
{_id: “W1”,
 Ename: ”John Smith”,
 Hours: 32.5}
{_id: “W2”,
 Ename: ”Joice English”,
 Hours: 20.0}

L. Vigliano

NoSQL Database
 MongoDB - Data Structure(3)

Normalized documents
{_id: “P1”,
 Pname: “ProductX”,
 Plocation: “Bellaire”,
 }
{_id: “W1”,
 Ename: ”John Smith”,
 projectId: “P1”,
 Hours: 32.5}
{_id: “W2”,
 Ename: ”Joice English”,
 projectId: “P1”,
 Hours: 20.0}

L. Vigliano

NoSQL Database
 MongoDB - CRUD Operation

Insert
db.<Collection_name>.insert(<documet(s)>)

Db.project.insert

({_id:”P1”,Pname:”ProductX”,Plocation:”Bellaire” })

Db.worker.insert([

 {_id:”W1”,Ename:”John Smith”,ProjectId:”P1”,Hours:32.5 },
 {_id:”W2”,Ename:”Joice English”,ProjectId:”P1”,Hours:20 }])

L. Vigliano

NoSQL Database
 MongoDB - CRUD Operation

Delete and update

db.<Collection_name>.remove(<condition>)

db.<Collection_name>.update(<condition>,<setclause>)

L. Vigliano

NoSQL Database
 MongoDB - CRUD Operation

Read

db.<Collection_name>.find(<condition>)

db.Project.find({}, {Ename:1,Hours:1});

L. Vigliano

NoSQL Database
 MongoDB - more characteristics

•  Lack of a schema definition.

•  Lack of data typing.

L. Vigliano

NoSQL Database
 SQL vs MongoDB - Query

SQL MongoDB to insert a text
select a,b from Users; dDb.users.find({}, {a:1,b:1});

select * from users where
age=33;

db.users.find({age:33});

select * from users where
age=33 order by name;

db.users.find({age:33}).sort
({name:1});

create index myind on
users(name);

db.users.ensureIndex({name:1});

L. Vigliano

NoSQL Database
 MongoDB - distributed system

characteristics

•  Two-Phase Commit Protocol.
•  Replication by Replica Set.
•  Sharding (horizontal partioning) and

horizontal scaling(load balancing):
–  Range partitioning
–  Hash partitioning

L. Vigliano

NoSQL Database
 BigTable - goals

•  High scalability managing different servers and
petabytes needed to store data.

•  Performance control.
•  Continuation and Fault Tolerance.
•  Generating multi-dimensional sorted maps.

 Distributed storage system, semi-structured data, based
on Google File System.

L. Vigliano

NoSQL Database
 BigTable - Data Format

•  SSTable Format :
•  Map persistent, orderly and unchanging

association key-value, seen as arbitrary
strings.

•  Multi-dimensional keys
•  Column : Column family and column

qualifier

L. Vigliano

NoSQL Database
 BigTable/Hbase - Data Model

•  Namespace
•  Table
•  Column (Column family:Column

 qualifier)
•  Row
•  Data cell

L. Vigliano

NoSQL Database
 BigTable - Data Model (2)

•  Not relational, but based on the layout of each
property of the DB.

•  Multidimensional map, orderly, sparse,
distributed and persistent, indexed by row key,
column key and timestamp.

•  Grouped rows dynamically.
•  No predefined columns.
•  Multiversioning data of each cell.

L. Vigliano

NoSQL Database
 BigTable/Hbase - Data Model (3)

•  Table is associated with column families.
•  Column families associated with a table cannot

be changed after the creation table

Creating a table :
 Create ‘EMP’,’Name’,’Address’,’Details’

L. Vigliano

NoSQL Database
 BigTable/Hbase - Data Model (4)

•  Each column family can be associated with

many not specified column qualifiers

•  A column is a combination
ColumnFamily:ColumnQualifier

L. Vigliano

NoSQL Database
 BigTable/Hbase - Data Model (5)

put ‘EMP’,’row1’,’Name:Fname’,’John’
put ‘EMP’,’row1’,’Name:Lname’,’Smith’
put ‘EMP’,’row1’,’Name:Nickname’,’Johnny’
put ‘EMP’,’row1’,’Details:Job’,’Engineer’
put ‘EMP’,’row1’,’Details:Review’,’Good’
put ‘EMP’,’row2’,’Name:Fname’,’Alicia’
put ‘EMP’,’row2’,’Name:Lname’,’Zelaya’
put ‘EMP’,’row2’,’Name:Mname’,’Jennifer’
put ‘EMP’,’row2’,’Details:Job’,’DBA’
put ‘EMP’,’row2’,’Details:Supervisor’,’James Borg’
put ‘EMP’,’row3’,’Name:Fname’,’James’
put ‘EMP’,’row3’,’Name:Minit’,’E’
put ‘EMP’,’row3’,’Name:Lname’,’Borg’
put ‘EMP’,’row3’,’Name:Suffix’,’Jr.’
put ‘EMP’,’row3’,’Details:Salary’,’1,000,000’

L. Vigliano

NoSQL Database
 BigTable/Hbase - CRUD Operation
Low level operations

Create <tablename>,<column family>, <column family>,…

Put <tablename>,<rowid>,<column family>:<column

qualifier>,<value>

Scan <tablename>

Get <tablename>,<rowid>

L. Vigliano

Linked Open Data

•  Tim Berners Lee

