The Language of First-order Logic

KR & R

© Brachman & Levesque 2005

17

Declarative language

Before building system

before there can be learning, reasoning, planning, explanation ...

need to be able to express knowledge

Want a precise declarative language

- declarative: believe P = hold P to be true cannot believe P without some sense of what it would mean for the world to satisfy P
- precise: need to know exactly what strings of symbols count as sentences what it means for a sentence to be true (but without having to specify which ones are true)

Here: language of first-order logic

again: not the only choice

Alphabet

Logical symbols:

- Punctuation: (,), .
- Connectives: \neg , \land , \lor , \forall , \exists , =
- Variables: $x, x_1, x_2, ..., x', x'', ..., y, ..., z, ...$

Fixed meaning and use

like keywords in a programming language

Non-logical symbols

· Predicate symbols (like Dog)

Note: not treating = as a predicate

• Function symbols (like bestFriendOf)

Domain-dependent meaning and use like identifiers in a programming language

Have arity: number of arguments

arity 0 predicates: propositional symbols arity 0 functions: constant symbols

Assume infinite supply of every arity

KR & R

© Brachman & Levesque 2005

19

Grammar

Terms

- Every variable is a term.
- 2. If $t_1, t_2, ..., t_n$ are terms and f is a function of arity n, then $f(t_1, t_2, ..., t_n)$ is a term.

Atomic wffs (well-formed formula)

- 1. If $t_1, t_2, ..., t_n$ are terms and P is a predicate of arity n, then $P(t_1, t_2, ..., t_n)$ is an atomic wff.
- 2. If t_1 and t_2 are terms, then $(t_1=t_2)$ is an atomic wff.

Wffs

- 1. Every atomic wff is a wff.
- 2. If α and β are wffs, and ν is a variable, then $\neg \alpha$, $(\alpha \land \beta)$, $(\alpha \lor \beta)$, $\exists \nu.\alpha$, $\forall \nu.\alpha$ are wffs.

The propositional subset: no terms, no quantifiers

Atomic wffs: only predicates of 0-arity: $(p \land \neg (q \lor r))$

Notation

Occasionally add or omit (,), .

Use [,] and {,} also.

Abbreviations:

$$(\alpha \supset \beta) \ \ \text{for} \ \ (\neg \alpha \lor \beta)$$
 safer to read as disjunction than as "if ... then ..."
$$(\alpha \equiv \beta) \ \ \text{for} \ \ ((\alpha \supset \beta) \land (\beta \supset \alpha))$$

Non-logical symbols:

Predicates: mixed case capitalized
 Person, Happy, OlderThan

Functions (and constants): mixed case uncapitalized

fatherOf, successor, johnSmith

KR & R

© Brachman & Levesque 2005

2

Variable scope

Like variables in programming languages, the variables in FOL have a scope determined by the quantifiers

Lexical scope for variables

$$P(x) \wedge \exists x [P(x) \vee Q(x)]$$
free bound occurrences of variables

A sentence: wff with no free variables (closed)

Substitution:

 $\alpha[\nu/t]$ means α with all free occurrences of the ν replaced by term t

Note: written α_t^{ν} elsewhere (and in book)

Also: $\alpha[t_1,...,t_n]$ means $\alpha[v_1/t_1,...,v_n/t_n]$

Semantics

How to interpret sentences?

- what do sentences claim about the world?
- what does believing one amount to?

Without answers, cannot use sentences to represent knowledge

Problem:

cannot fully specify interpretation of sentences because non-logical symbols reach outside the language

So:

make clear dependence of interpretation on non-logical symbols

Logical interpretation:

specification of how to understand predicate and function symbols

Can be complex!

DemocraticCountry, IsABetterJudgeOfCharacterThan, favouriteIceCreamFlavourOf, puddleOfWater27

KR & R © Brachman & Levesque 2005

23

The simple case

There are objects.

some satisfy predicate P; some do not

Each interpretation settles <u>extension</u> of *P*.

borderline cases ruled in separate interpretations

Each interpretation assigns to function f a mapping from objects to objects.

functions always well-defined and single-valued

The FOL assumption:

this is all you need to know about the non-logical symbols to understand which sentences of FOL are true or false

In other words, given a specification of

- » what objects there are
- » which of them satisfy P
- » what mapping is denoted by f

it will be possible to say which sentences of FOL are true

Interpretations

Two parts: $\mathcal{S} = \langle D, I \rangle$

D is the domain of discourse

can be any non-empty set

not just formal / mathematical objects

e.g. people, tables, numbers, sentences, unicorns, chunks of peanut butter, situations, the universe

I is an interpretation mapping

If P is a predicate symbol of arity n,

$$I[P] \subseteq D \times D \times ... \times D$$

an n-ary relation over ${\cal D}$

for constants, $I[c] \in D$

If f is a function symbol of arity n,

 $I[f] \in [D \times D \times ... \times D \rightarrow D]$

an n-ary function over D

$$I[p] = \{\}$$
 or $I[p] = \{\langle\rangle\}$

In propositional case, convenient to assume

$$\mathcal{S} = I \in [\textit{prop. symbols} \rightarrow \{\textit{true}, \textit{false}\}]$$

KR & R

© Brachman & Levesque 2005

25

Denotation

In terms of interpretation \mathcal{I} , terms will denote elements of the domain D.

will write element as $||t||_{\mathfrak{I}}$

For terms with variables, the denotation depends on the values of variables

will write as $||t||_{\mathcal{J},\mu}$

where $\mu \in [Variables \rightarrow D]$, called a <u>variable assignment</u>

Rules of interpretation:

1.
$$||v||_{\mathfrak{I},\mu} = \mu(v)$$
.

2.
$$||f(t_1, t_2, ..., t_n)||_{\mathfrak{I},\mu} = H(d_1, d_2, ..., d_n)$$

where
$$H = I[f]$$

and
$$d_i = ||t_i||_{\mathcal{I},\mu}$$
, recursively

KR & R

© Brachman & Levesque 2005

26

Satisfaction

In terms of an interpretation \mathcal{S} , sentences of FOL will be either true or false.

Formulas with free variables will be true for some values of the free variables and false for others.

Notation:

will write as $\mathcal{J}, \mu \models \alpha$ " α is satisfied by \mathcal{J} and μ " where $\mu \in [Variables \rightarrow D]$, as before

or $\mathcal{S} \models \alpha$, when α is a sentence " α is true under interpretation \mathcal{S} "

or $\mathcal{S} \models S$, when S is a set of sentences "the elements of S are true under interpretation \mathcal{S} "

And now the definition...

KR & R © Brachman & Levesque 2005

2

Rules of interpretation

- 1. $\mathcal{J},\mu \models P(t_1,\,t_2,\,...,\,t_n)$ iff $\langle d_1,\,d_2,\,...,\,d_n \rangle \in R$ where R=I[P] and $d_i=\parallel t_i \parallel_{\mathcal{J},\mu}$, as on denotation slide
- 2. $\mathcal{J}, \mu \models (t_1 = t_2)$ iff $||t_1||_{\mathcal{J}, \mu}$ is the same as $||t_2||_{\mathcal{J}, \mu}$
- 3. $\Im, \mu \models \neg \alpha \text{ iff } \Im, \mu \not\models \alpha$
- 4. $\Im,\mu \models (\alpha \land \beta)$ iff $\Im,\mu \models \alpha$ and $\Im,\mu \models \beta$
- 5. $\mathcal{I}, \mu \models (\alpha \lor \beta)$ iff $\mathcal{I}, \mu \models \alpha$ or $\mathcal{I}, \mu \models \beta$
- 6. $\mathcal{I}, \mu \models \exists v \alpha \text{ iff for some } d \in D, \ \mathcal{I}, \mu\{d; v\} \models \alpha$
- 7. $\mathcal{J}, \mu \models \forall v \alpha$ iff for all $d \in D$, $\mathcal{J}, \mu\{d; v\} \models \alpha$ where $\mu\{d; v\}$ is just like μ , except that $\mu(v)=d$.

For propositional subset:

$$\mathcal{F} \models p \quad \text{iff} \quad I[p] \neq \{\}$$

and the rest as above

Entailment defined

Semantic rules of interpretation tell us how to understand all wffs in terms of specification for non-logical symbols.

But some connections among sentences are independent of the non-logical symbols involved.

e.g. If
$$\alpha$$
 is true under \mathcal{I} , then so is $\neg(\beta \land \neg \alpha)$, no matter what \mathcal{I} is, why α is true, what β is, ...

$$S \models \alpha$$
 iff for every \mathcal{I} , if $\mathcal{I} \models S$ then $\mathcal{I} \models \alpha$.

Say that S entails α or α is a logical consequence of S:

In other words: for no \mathcal{S} , $\mathcal{S} \models S \cup \{\neg \alpha\}$. $S \cup \{\neg \alpha\}$ is <u>unsatisfiable</u>

Special case when S is empty: $|= \alpha$ iff for every \mathcal{I} , \mathcal{I} $|= \alpha$. Say that α is valid.

Note:
$$\{\alpha_1, \alpha_2, ..., \alpha_n\} \models \alpha$$
 iff $\models (\alpha_1 \land \alpha_2 \land ... \land \alpha_n) \supset \alpha$ finite entailment reduces to validity

KR & R © Brachman & Levesque 2005

29

Why do we care?

We do not have access to user-intended interpretation of nonlogical symbols

But, with <u>entailment</u>, we know that if S is true in the intended interpretation, then so is α .

If the user's view has the world satisfying S, then it must also satisfy α .

There may be other sentences true also; but α is logically guaranteed.

So what about ordinary reasoning?

Not entailment!

There are logical interpretations where $I[Dog] \not\subset I[Mammal]$

Key idea of KR:

include such connections explicitly in
$$S$$

$$\forall x[Dog(x) \supset Mammal(x)]$$
Get: $S \cup \{Dog(fido)\} \models Mammal(fido)$

the rest is just details...

Knowledge bases

KB is set of sentences

explicit statement of sentences believed (including any assumed connections among non-logical symbols)

KB $\mid = \alpha$ α is a further consequence of what is believed

• explicit knowledge: KB

• implicit knowledge: $\{ \alpha \mid KB \mid = \alpha \}$

Often non trivial: explicit implicit

Example:

Three blocks stacked.

Top one is green.

Bottom one is not green.

A green
B non-green

Is there a green block directly on top of a non-green block?

KR & R © Brachman & Levesque 2005

31

A formalization

$$S = \{On(a,b), On(b,c), Green(a), \neg Green(c)\}$$

all that is required

$$\alpha = \exists x \exists y [Green(x) \land \neg Green(y) \land On(x,y)]$$

Claim: $S = \alpha$

Proof:

Let \mathcal{S} be any interpretation such that $\mathcal{S} \models S$.

Case 1:
$$\Im \models Green(b)$$
. Case 2: $\Im \not\models Green(b)$.

$$\mathcal{I} \models Green(b) \land \neg Green(c) \land On(b,c).$$
 $\mathcal{I} \models \neg Green(b)$

$$\therefore \mathcal{S} \models \alpha$$
 $\therefore \mathcal{S} \models Green(a) \land \neg Green(b) \land On(a,b).$

$$\therefore \mathcal{I} \models \alpha$$

Either way, for any \mathcal{S} , if $\mathcal{S} \models S$ then $\mathcal{S} \models \alpha$.

So
$$S = \alpha$$
. QED

Knowledge-based system

Start with (large) KB representing what is explicitly known

e.g. what the system has been told or has learned

Want to influence behaviour based on what is <u>implicit</u> in the KB (or as close as possible)

Requires reasoning

deductive inference:

process of calculating entailments of KB i.e given KB and any α , determine if KB |= α

Process is <u>sound</u> if whenever it produces α , then KB $\mid=\alpha$ does not allow for plausible assumptions that may be true in the intended interpretation

Process is <u>complete</u> if whenever KB $\models \alpha$, it produces α does not allow for process to miss some α or be unable to determine the status of α

KR & R © Brachman & Levesque 2005

33