3.

Expressing Knowledge

© Brachman & Levesque 2005

Knowledge engineering

KR is first and foremost about knowledge

meaning and entailment

find individuals and properties, then encode facts sufficient for entailments

Before implementing, need to understand clearly

- what is to be computed?
- why and where inference is necessary?

Example domain: soap-opera world

people, places, companies, marriages, divorces, hanky-panky, deaths, kidnappings, crimes, ...

Task: KB with appropriate entailments

- what vocabulary?
- what facts to represent?

Domain-dependent predicates and functions

main question: what are the individuals? here: people, places, companies, ...

named individuals

john, sleezyTown, faultyInsuranceCorp, fic, johnQsmith, ...

basic types

Person, Place, Man, Woman, ...

attributes

Rich, Beautiful, Unscrupulous, ...

relationships

LivesAt, MarriedTo, DaughterOf, HadAnAffairWith, Blackmails, ...

functions

fatherOf, ceoOf, bestFriendOf, ...

KR & R

© Brachman & Levesque 2005

Basic facts

Usually atomic sentences and negations

type facts

Man(john),

Woman(jane),

Company(faultyInsuranceCorp)

property facts

Rich(john), -HappilyMarried(jim), WorksFor(jim,fic)

equality facts

john = ceoOf(fic), fic = faultyInsuranceCorp, bestFriendOf(jim) = john

Like a simple database (can store in a table)

Complex facts

Universal abbreviations $\forall y [Woman(y) \land y \neq jane \supset Loves(y, john)]$ possible to express $\forall y[\operatorname{Rich}(y) \land \operatorname{Man}(y) \supset \operatorname{Loves}(y, \operatorname{jane})]$ without quantifiers $\forall x \forall y [Loves(x, y) \supset \neg Blackmails(x, y)]$ Incomplete knowledge Loves(jane,john) v Loves(jane,jim) cannot write down which? a more complete version $\exists x [Adult(x) \land Blackmails(x, john)]$ who? **Closure** axioms $\forall x [Person(x) \supset x = jane \lor x = john \lor x = jim \dots]$ $\forall x \forall y [MarriedTo(x, y) \supset ...]$ limit the domain of discourse $\forall x [x=fic \lor x=jane \lor x=john \lor x=jim \dots]$ also useful to have jane \neq john ... © Brachman & Levesque 2005 KR & R 38

Terminological facts

General relationships among predicates. For example:

disjoint	$\forall x[\operatorname{Man}(x) \supset \neg \operatorname{Woman}(x)]$
subtype	$\forall x [\text{Senator}(x) \supset \text{Legislator}(x)]$
exhaustive	$\forall x [\text{Adult}(x) \supset \text{Man}(x) \lor \text{Woman}(x)]$
symmetry	$\forall x \forall y [MarriedTo(x,y) \supset MarriedTo(y,x)]$
inverse	$\forall x \forall y $ [ChildOf(<i>x</i> , <i>y</i>) \supset ParentOf(<i>y</i> , <i>x</i>)]
type restrict	tion $\forall x \forall y \; [MarriedTo(x,y) \supset Person(x) \land Person(y) \land OppSex(x,y)]$
	Sometimes

Usually universally quantified conditionals or biconditionals

Is there a company whose CEO loves Jane?

```
\exists x [Company(x) \land Loves(ceoOf(x),jane)] ??
Suppose \mathcal{F} \models KB.

Then \mathcal{F} \models Rich(john), Man(john),

and \mathcal{F} \models \forall y [Rich(y) \land Man(y) \supset Loves(y,jane)]

so \mathcal{F} \models Loves(john,jane).

Also \mathcal{F} \models john = ceoOf(fic),

so \mathcal{F} \models Loves( ceoOf(fic),jane).

Finally \mathcal{F} \models Company(faultyInsuranceCorp),

and \mathcal{F} \models fic = faultyInsuranceCorp,

so \mathcal{F} \models Company(fic).

Thus, \mathcal{F} \models Company(fic) \land Loves( ceoOf(fic),jane),

and so

\mathcal{F} \models \exists x [Company(x) \land Loves(ceoOf(x),jane)].

Can extract identity of company from this proof
```

KR & R

© Brachman & Levesque 2005

40

Entailments: 2

If no man is blackmailing John, then is he being blackmailed by somebody he loves?

```
\forall x[Man(x) \supset \neg Blackmails(x, john)] \supset
                   \exists y [Loves(john, y) \land Blackmails(y, john)] ??
      Note: KB \models (\alpha \supset \beta) iff KB \cup \{\alpha\} \models \beta
Let: \mathcal{J} \models \mathsf{KB} \cup \{\forall x [\mathsf{Man}(x) \supset \neg \mathsf{Blackmails}(x, \mathsf{john})]\}
Show:
                  \Im \models \exists y [Loves(john, y) \land Blackmails(y, john)]
      Have: \exists x [\operatorname{Adult}(x) \land \operatorname{Blackmails}(x, \operatorname{john})] and \forall x [\operatorname{Adult}(x) \supset \operatorname{Man}(x) \lor \operatorname{Woman}(x)]
                  \exists x [Woman(x) \land Blackmails(x, john)].
          SO
          Then:
                           \forall y[\operatorname{Rich}(y) \land \operatorname{Man}(y) \supset \operatorname{Loves}(y, \operatorname{jane})] and \operatorname{Rich}(\operatorname{john}) \land \operatorname{Man}(\operatorname{john})
          SO
                  Loves(john,jane)!
          But: \forall y [Woman(y) \land y \neq jane \supset Loves(y, john)]
          and \forall x \forall y [Loves(x, y) \supset \neg Blackmails(x, y)]
                  \forall y[Woman(y) \land y \neq jane \supset \negBlackmails(y,john)] and Blackmails(jane,john)!!
          SO
          Finally: Loves(john, jane) ^ Blackmails(jane, john)
          so: \exists y [Loves(john, y) \land Blackmails(y, john)]
```

Sometimes useful to reduce n-ary predicates to 1-place predicates and 1-place functions

- · involves reifying properties: new individuals
- typical of description logics / frame languages (later)

Flexibility in terms of arity:

Purchases(john,sears,bike) or Purchases(john,sears,bike,feb14) or Purchases(john,sears,bike,feb14,\$100)

Instead: introduce purchase objects

Purchase(p) \land agent(p)=john \land obj(p)=bike \land source(p)=sears \land ... allows purchase to be described at various levels of detail

Complex relationships: MarriedTo(x,y) vs. ReMarriedTo(x,y) vs. ...

Instead define marital status in terms of existence of marriage and divorce events.

 $Marriage(m) \land husband(m) = x \land wife(m) = y \land date(m) = ... \land ...$

KR & R

© Brachman & Levesque 2005

Abstract individuals

Also need individuals for numbers, dates, times, addresses, etc.

objects about which we ask wh-questions

Quantities as individuals

```
age(suzy) = 14
```

age-in-years(suzy) = 14 age-in-months(suzy) = 168

perhaps better to have an object for "the age of Suzy", whose value in years is 14

years(age(suzy)) = 14

months(x) = 12*years(x)

centimeters(x) = 100*meters(x)

Similarly with locations and times

```
instead of
time(m)="Jan 5 2006 4:47:03EST"
```

can use

time(m)= $t \land year(t)=2006 \land ...$

Statistical / probabilistic facts

- Half of the companies are located on the East Side.
- Most of the employees are restless.
- Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls.
- Cars have four wheels.
- Companies generally do not allow employees that work together to be married.

Intentional facts

- John believes that Henry is trying to blackmail him.
- Jane does not want Jim to think that she loves John.

Others ...

KR & R © Brachman & Levesque 2005