
KR & R © Brachman & Levesque 2005 45

4.

Resolution

KR & R © Brachman & Levesque 2005 46

Goal

Deductive reasoning in language as close as possible to full FOL
¬, ∧, ∨, ∃, ∀

Knowledge Level:
given KB, α, determine if KB |= α.

or given an open α[x1,x2,...xn], find t1,t2,...tn such that KB |= α[t1,t2,...tn]

When KB is finite {α1, α2, ..., αk}
KB |= α

iff |= [(α1 ∧ α2 ∧ ... ∧ αk) ⊃ α]

iff KB ∪ {¬α} is unsatisfiable

iff KB ∪ {¬α} |= FALSE
where FALSE is something like ∃x.(x≠x)

So want a procedure to test for validity, or satisfiability, or
for entailing FALSE.

Will now consider such a procedure (first without quantifiers)

KR & R © Brachman & Levesque 2005 47

Clausal representation

Formula = set of clauses

Clause = set of literals

Literal = atomic sentence or its negation
positive literal and negative literal

Notation:
If ρ is a literal, then ρ is its complement

p ⇒ ¬p ¬p ⇒ p

To distinguish clauses from formulas:

[and] for clauses: [p, r, s] { and } for formulas: { [p, r, s], [p, r, s], [p] }

[] is the empty clause {} is the empty formula

So {} is different from {[]}!

Interpretation:
Formula understood as conjunction of clauses

Clause understood as disjunction of literals

Literals understood normally

{[p,¬q], [r], [s]}

represents

((p ∨ ¬q) ∧ r ∧ s)

[]

represents

FALSE

KR & R © Brachman & Levesque 2005 48

CNF and DNF

Every propositional wff α can be converted into a formula α′ in
Conjunctive Normal Form (CNF) in such a way that |= α ≡ α′.

1. eliminate ⊃ and ≡ using (α ⊃ β) ß (¬α ∨ β) etc.

2. push ¬ inward using ¬(α ∧ β) ß (¬α ∨ ¬β) etc.

3. distribute ∨ over ∧ using ((α ∧ β) ∨ γ) ß ((α ∨ γ) ∧ (β ∨ γ))

4. collect terms using (α ∨ α) ß α etc.

Result is a conjunction of disjunction of literals.
an analogous procedure produces DNF,
a disjunction of conjunction of literals

 We can identify CNF wffs with clausal formulas
(p ∨ ¬q ∨ r) ∧ (s ∨ ¬r) ß { [p, ¬q, r], [s, ¬r] }

So: given a finite KB, to find out if KB |= α, it will be sufficient to
1. put (KB ∧ ¬α) into CNF, as above
2. determine the satisfiability of the clauses

KR & R © Brachman & Levesque 2005 49

Resolution rule of inference

Given two clauses, infer a new clause:
From clause { p } ∪ C1,

and {¬p } ∪ C2,

infer clause C1 ∪ C2.

C1 ∪ C2 is called a resolvent of input clauses with respect to p.
Example:

clauses [w, r, q] and [w, s, ¬r] have [w, q, s] as resolvent wrt r.

Special Case:

[p] and [¬p] resolve to [] (the C1 and C2 are empty)

A derivation of a clause c from a set S of clauses is a sequence
c1, c2, ..., cn of clauses, where cn = c, and for each ci, either

1. ci ∈ S, or

2. ci is a resolvent of two earlier clauses in the derivation

Write: S → c if there is a derivation

KR & R © Brachman & Levesque 2005 50

Rationale

Resolution is a symbol-level rule of inference, but has a
connection to knowledge-level logical interpretations

Claim: Resolvent is entailed by input clauses.
Suppose ℑ |= (p ∨ α) and ℑ |= (¬p ∨ β)

Case 1: ℑ |= p

then ℑ | = β, so ℑ |= (α ∨ β).

Case 2: ℑ |≠ p

then ℑ | = α, so ℑ | = (α ∨ β).

Either way, ℑ |= (α ∨ β).

So: {(p ∨ α), (¬p ∨ β)} |= (α ∨ β).

Special case:
[p] and [¬p] resolve to [],

so {[p], [¬p]} |= FALSE

that is: {[p], [¬p]} is unsatisfiable

KR & R © Brachman & Levesque 2005 51

Derivations and entailment

Can extend the previous argument to derivations:

If S → c then S |= c
Proof: by induction on the length of the derivation.
Show (by looking at the two cases) that S |= ci.

But the converse does not hold in general

Can have S |= c without having S → c.

Example: {[¬p]} |= [¬p, ¬q] i.e. ¬p |= (¬p ∨ ¬q)
but no derivation

However.... Resolution is refutation complete!

Theorem: S → [] iff S |= []

Result will carry over to quantified clauses (later)

So for any set S of clauses: S is unsatisfiable iff S → [].
Provides method for determining satisfiability: search all derivations for [].

So provides a method for determining all entailments

sound and complete
when restricted to []

KR & R © Brachman & Levesque 2005 52

A procedure for entailment

To determine if KB |= α,
• put KB, ¬α into CNF to get S, as before

• check if S → [].

Non-deterministic procedure
1. Check if [] is in S.

If yes, then return UNSATISFIABLE

2. Check if there are two clauses in S such that they
resolve to produce a clause that is not already in S.

If no, then return SATISFIABLE

3. Add the new clause to S and go to 1.

Note: need only convert KB to CNF once
• can handle multiple queries with same KB

• after addition of new fact α, can simply add new clauses α′ to KB

So: good idea to keep KB in CNF

If KB = {}, then we are
testing the validity of α

KR & R © Brachman & Levesque 2005 53

Example 1

Show that KB |= Girl

[FirstGrade]

[¬FirstGrade, Child]

[¬Child, ¬Female, Girl]

[¬Child, ¬Male, Boy]

[¬Kindergarten, Child]

[Female]

[¬Girl]

[Child]

[Girl, ¬Female]

[Girl]

[]

negation of
query

Derivation has
9 clauses, 4 new

FirstGrade

FirstGrade ⊃ Child

Child ∧ Male ⊃ Boy

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

KB

KR & R © Brachman & Levesque 2005 54

Example 2

[Rain , Sun] [¬Sun, Mail] [¬Rain, Mail] [¬Mail]

[¬Sleet, Mail]

[¬Rain]

[¬Sun]

[Rain]

[]
Note: every clause
not in S has 2 parents

Show KB |= Mail
(Rain ∨ Sun)

(Sun ⊃ Mail)

((Rain ∨ Sleet) ⊃ Mail)

KB

Similarly KB |≠ Rain
Can enumerate all resolvents given ¬Rain,
and [] will not be generated

KR & R © Brachman & Levesque 2005 55

Quantifiers

Clausal form as before, but atom is P(t1, t2, ..., tn), where ti may
contain variables

Interpretation as before, but variables are understood universally
Example: { [P(x), ¬R(a,f(b,x))], [Q(x,y)] }

interpreted as

∀x∀y{[R(a,f(b,x)) ⊃ P(x)] ∧ Q(x,y)}

Substitutions: θ = {v1/t1, v2/t2, ..., vn/tn}

Notation: If ρ is a literal and θ is a substitution, then ρθ is the
result of the substitution (and similarly, cθ where c is a clause)

Example: θ = {x/a, y/g(x,b,z)}

P(x,z,f(x,y)) θ = P(a,z,f(a,g(x,b,z)))

A literal is ground if it contains no variables.

A literal ρ is an instance of ρ′, if for some θ, ρ = ρ′θ.

KR & R © Brachman & Levesque 2005 56

Generalizing CNF

Resolution will generalize to handling variables

But to convert wffs to CNF, we need three additional steps:

1. eliminate ⊃ and ≡

2. push ¬ inward using also ¬∀x.α ß ∃x.¬α etc.

3. standardize variables: each quantifier gets its own variable

e.g. ∃x[P(x)] ∧ Q(x) ß ∃z[P(z)] ∧ Q(x) where z is a new variable

4. eliminate all existentials (discussed later)

5. move universals to the front using (∀xα) ∧ β ß ∀x(α∧ β)
where β does not use x

6. distribute ∨ over ∧

7. collect terms

Get universally quantified conjunction of disjunction of literals
then drop all the quantifiers...

Ignore = for now

KR & R © Brachman & Levesque 2005 57

First-order resolution

Main idea: a literal (with variables) stands for all its instances; so
allow all such inferences

So given [P(x,a), ¬Q(x)] and [¬P(b,y), ¬R(b,f(y))],
want to infer [¬Q(b), ¬R(b,f(a))] among others

since [P(x,a), ¬Q(x)] has [P(b,a), ¬Q(b)] and
[¬P(b,y),¬R(b,f(y))] has [¬P(b,a), ¬R(b,f(a))]

Resolution:
Given clauses: {ρ1} ∪ C1 and {ρ2} ∪ C2.

Rename variables, so that distinct in two clauses.

For any θ such that ρ1θ = ρ2θ, can infer (C1 ∪ C2)θ.
We say that ρ1 unifies with ρ2 and that θ is a unifier of the two literals

Resolution derivation: as before

Theorem: S → [] iff S |= [] iff S is unsatisfiable
Note: There are pathological examples where a slightly more general
definition of Resolution is required. We ignore them for now...

KR & R © Brachman & Levesque 2005 58

Example 3

[¬HardWorker(sue)]

[¬Student(sue)]

[¬GradStudent(sue)]

[]

x/sue

x/sue

[¬Student(x), HardWorker(x)]

[¬GradStudent(x), Student(x)]

[GradStudent(sue)]

Label each step
with the unifier

Point to relevant
literals in clauses

∀x GradStudent(x) ⊃ Student(x)

∀x Student(x) ⊃ HardWorker(x)

GradStudent(sue)

KB

KB |= HardWorker(sue)
?

KR & R © Brachman & Levesque 2005 59

The 3 block example

[On(b,c)]

[On(a,b)]

[¬On(x,y), ¬Green(x), Green(y)]

[Green(a)]

[¬Green(c)] [¬Green(a), Green(b)]

[¬Green(b), Green(c)]

[¬Green(b)]
[Green(b)]

[]
Note: Need to use
On(x,y) twice, for 2 cases

{x/b, y/c}

{x/a, y/b}

KB = {On(a,b), On(b,c), Green(a), ¬Green(c)}

Query = ∃x∃y[On(x,y) ∧ Green(x) ∧ ¬Green(y)]
Note: ¬Q has no existentials, so yields

already in CNF

KR & R © Brachman & Levesque 2005 60

Arithmetic

[¬Plus(2,3,u)]

[¬Plus(1,3,v)]

[¬Plus(0,3,w)]

[]

x/3, w/3

x/0, y/3, v/succ(w), z/w

x/1, y/3, u/succ(v), z/v

Can find the answer in the derivation
 u/succ(succ(3))

that is: u/5

Can also derive Plus(2,3,5)
Rename variables
to keep them distinct

[¬Plus(x,y,z), Plus(succ(x),y,succ(z))]

[Plus(0,x,x)]

KB: Plus(zero,x,x)
Plus(x,y,z) ⊃ Plus(succ(x),y,succ(z))

Q: ∃u Plus(2,3,u)

For readability,
we use

0 for zero,
1 for succ(zero),
2 for succ(succ(zero))

etc.

KR & R © Brachman & Levesque 2005 61

Answer predicates

In full FOL, we have the possibility of deriving ∃xP(x) without
being able to derive P(t) for any t.

e.g. the three-blocks problem

 ∃x∃y[On(x,y) ∧ Green(x) ∧ ¬Green(y)]

but cannot derive which block is which

Solution: answer-extraction process
• replace query ∃xP(x) by ∃x[P(x) ∧ ¬A(x)]

where A is a new predicate symbol called the answer predicate

• instead of deriving [], derive any clause containing just the answer predicate

• can always convert to and from a derivation of []

Student(john)

[¬Student(x), ¬Happy(x), A(x)]
Happy(john)

[¬Student(john), A(john)]

[A(john)]

{x/john}

⇓

An answer is: John

KB: Student(john)
Student(jane)
Happy(john)

Q: ∃x[Student(x) ∧ Happy(x)]

KR & R © Brachman & Levesque 2005 62

Disjunctive answers

[¬Happy(john), A(john)]

[A(jane), A(john)]

{x/john}

⇓
[¬Student(x), ¬Happy(x), A(x)]

Student(jane)

[¬Happy(jane), A(jane)]

{x/jane}

[Happy(john), Happy(jane)]

[Happy(john), A(jane)]

Student(john)

An answer is: either Jane or John

KB:

Student(john)
Student(jane)
Happy(john) ∨ Happy(jane)

Query:

∃x[Student(x) ∧ Happy(x)]

Note:

• can have variables in answer

• need to watch for Skolem symbols... (next)

KR & R © Brachman & Levesque 2005 63

Skolemization

So far, converting wff to CNF ignored existentials
e.g. ∃x∀y∃zP(x,y,z)

Idea: names for individuals claimed to exist, called Skolem
constant and function symbols

there exists an x, call it a

for each y, there is a z, call it f(y)

get ∀yP(a,y,f(y))

So replace ∀x1(...∀x2(...∀xn(...∃y[... y ...] ...)...)...)
by ∀x1(...∀x2(...∀xn(... [... f(x1,x2,...,xn) ...] ...)...)...)

f is a new function symbol that appears nowhere else

Skolemization does not preserve equivalence
e.g. |≠ ∃xP(x) ≡ P(a)

But it does preserve satisfiability
α is satisfiable iff α′ is satisfiable (where α′ is the result of Skolemization)

sufficient for resolution!

KR & R © Brachman & Levesque 2005 64

Variable dependence

Show that ∃x∀yR(x,y) |= ∀y∃xR(x,y)

show {∃x∀yR(x,y), ¬∀y∃xR(x,y)} unsatisfiable

∃x∀yR(x,y) ß ∀yR(a,y)

¬∀y∃xR(x,y) ß ∃y∀x¬R(x,y) ß ∀x¬R(x,b)

 then { [R(a,y)], [¬R(x,b)] } → [] with {x/a, y/b}.

Show that ∀y∃xR(x,y) |≠ ∃x∀yR(x,y)

show {∀y∃xR(x,y), ¬∃x∀yR(x,y)} satisfiable

∀y∃xR(x,y) ß ∀yR(f(y),y)

¬∃x∀yR(x,y) ß ∀x∃y¬R(x,y) ß ∀x¬R(x,g(x))

then get { [R(f(y),y)], [¬R(x,g(x)] }

where the two literals do not unify

Note: important to get dependence of variables correct
R(f(y),y) vs. R(a,y) in the above

KR & R © Brachman & Levesque 2005 65

A problem

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

[LessThan(x,y), ¬LessThan(succ(x),y)]

...

Infinite branch of resolvents

cannot use a simple depth-first
procedure to search for []

KB:

LessThan(succ(x),y) ⊃ LessThan(x,y)

Query:

LessThan(zero,zero)

Should fail since KB |≠ Q

KR & R © Brachman & Levesque 2005 66

Undecidability

Is there a way to detect when this happens?

No! FOL is very powerful
can be used as a full programming language

just as there is no way to detect in general when
a program is looping

There can be no procedure that does this:
Proc[Clauses] =

If Clauses are unsatisfiable
then return YES
else return NO

However: Resolution is complete
some branch will contain [], for unsatisfiable clauses

So breadth-first search guaranteed to find []
search may not terminate on satisfiable clauses

[]
...

...

...
infinite
branches

KR & R © Brachman & Levesque 2005 67

Overly specific unifiers

In general, no way to guarantee efficiency, or even termination
later: put control into users' hands

One thing that can be done:
reduce redundancy in search, by keeping search as general as possible

Example

..., P(g(x),f(x),z)] [¬P(y,f(w),a), ...

unified by

θ1 = {x/b, y/g(b), z/a, w/b} gives P(g(b),f(b),a)

and by

θ2 = {x/f(z), y/g(f(z)), z/a, w/f(z)} gives P(g(f(z)),f(f(z)),a).

Might not be able to derive the empty clause from clauses having
overly specific substitutions

wastes time in search!

KR & R © Brachman & Levesque 2005 68

Most general unifiers

θ is a most general unifier (MGU) of literals ρ1 and ρ2 iff
1. θ unifies ρ1 and ρ2

2. for any other unifier θ′, there is a another substitution θ*
such that θ′ = θθ*

Note: composition θθ* requires applying θ* to terms in θ

for previous example, an MGU is
 θ = {x/w, y/g(w), z/a}

for which
 θ1 = θ{w/b}

 θ2 = θ{w/f(z)}

Theorem: Can limit search to most general unifiers only without
loss of completeness (with certain caveats)

KR & R © Brachman & Levesque 2005 69

Computing MGUs

Computing an MGU, given a set of literals {ρi}
usually only have two literals

1. Start with θ := {}.

2. If all the ρiθ are identical, then done;
otherwise, get disagreement set, DS

e.g P(a,f(a,g(z),... P(a,f(a,u,...

disagreement set, DS = {u, g(z)}

3. Find a variable v ∈ DS, and a term t ∈ DS not containing v.
If not, fail.

4. θ := θ{v/ t }

5. Go to 2

Note: there is a better linear algorithm

KR & R © Brachman & Levesque 2005 70

Herbrand Theorem

Some 1st-order cases can be handled by converting them to a
propositional form

Given a set of clauses S

• the Herbrand universe of S is the set of all terms formed using only the function
symbols in S (at least one)

e.g., if S uses (unary) f, and c, d, U = {c, d, f(c), f(d), f(f(c)), f(f(d)), f(f(f(c))), ...}

• the Herbrand base of S is the set of all cθ such that c ∈ S and θ replaces the
variables in c by terms from the Herbrand universe

Theorem: S is satisfiable iff Herbrand base is
(applies to Horn clauses also)

Herbrand base has no variables, and so is essentially
propositional, though usually infinite

• finite, when Herbrand universe is finite

can use propositional methods (guaranteed to terminate)

• sometimes other “type” restrictions can be used to keep the Herbrand base finite

include f(t) only if t is the correct type

KR & R © Brachman & Levesque 2005 71

Resolution is difficult!

First-order resolution is not guaranteed to terminate.

What can be said about the propositional case?
Shown by Haken in 1985 that there are unsatisfiable clauses {c1, c2, ..., cn}
such that the shortest derivation of [] contains on the order of 2n clauses

Even if we could always find a derivation immediately, the most clever search
procedure will still require exponential time on some problems

Problem just with resolution?
Probably not.

Determining if a set of clauses is satisfiable was shown by Cook in 1972
to be NP-complete

No easier than an extremely large variety of computational tasks

Roughly: any search task where what is searched for can be verified in
polynomial time can be recast as a satisfiability problem

» satisfiability

» does graph of cities allow for a full tour of size ≤ k miles?

» can N queens be put on an N×N chessboard all safely? and many, many more....

Satisfiability is believed by most people to be unsolvable in polynomial time

KR & R © Brachman & Levesque 2005 72

SAT solvers

In the propositional case, procedures have been proposed for
determining the satisfiability of a set of clauses that appear to
work much better in practice than Resolution.

The most popular is called DP (or DPLL) based on ideas by
Davis, Putnam, Loveland and Logemann. (See book for details.)

These procedures are called SAT solvers as they are mostly used
to find a satisfying interpretation for clauses that are satisfiable.

related to constraint satisfaction programs (CSP)

Typically they have the property that if they fail to find a satisfying
interpretation, a Resolution derivation of [] can be reconstructed
from a trace of their execution.

so worst-case exponential behaviour, via Haken’s theorem!

One interesting counter-example to this is the procedure GSAT,
which has different limitations. (Again, see the book.)

KR & R © Brachman & Levesque 2005 73

Implications for KR

Problem: want to produce entailments of KB as needed for
immediate action

full theorem-proving may be too difficult for KR!

need to consider other options ...
– giving control to user e.g. procedural representations (later)

– less expressive languages e.g. Horn clauses (and a major theme later)

In some applications, it is reasonable to wait
e.g. mathematical theorem proving, where we care about specific formulas

Best to hope for in general: reduce redundancy
main example: MGU, as before

but many other strategies (as we will see)

ATP: automated theorem proving
– area of AI that studies strategies for automatically proving difficult theorems

– main application: mathematics,but relevance also to KR

KR & R © Brachman & Levesque 2005 74

Strategies

1. Clause elimination
• pure clause

contains literal ρ such that ρ does not appear in any other clause
clause cannot lead to []

• tautology
clause with a literal and its negation

any path to [] can bypass tautology

• subsumed clause
a clause such that one with a subset of its literals is already present

path to [] need only pass through short clause

can be generalized to allow substitutions

2. Ordering strategies
many possible ways to order search, but best and simplest is

• unit preference
prefer to resolve unit clauses first

Why? Given unit clause and another clause, resolvent is a smaller one ß []

KR & R © Brachman & Levesque 2005 75

Strategies 2

3. Set of support
KB is usually satisfiable, so not very useful to resolve among clauses
with only ancestors in KB

contradiction arises from interaction with ¬Q

always resolve with at least one clause that has an ancestor in ¬Q
preserves completeness (sometimes)

4. Connection graph
pre-compute all possible unifications

build a graph with edges between any two unifiable literals of opposite
polarity

label edge with MGU

Resolution procedure:
repeatedly: select link

compute resolvent
inherit links from parents after substitution

Resolution as search: find sequence of links L1, L2, ... producing []

KR & R © Brachman & Levesque 2005 76

Strategies 3

5. Special treatment for equality
instead of using axioms for =

relexitivity, symmetry, transitivity, substitution of equals for equals

use new inference rule: paramodulation

from {(t=s)} ∪ C1 and {P(... t′...)} ∪ C2
where tθ = t′θ

infer {P(... s ...)}θ ∪ C1θ ∪ C2θ.
collapses many resolution steps into one

see also: theory resolution (later)

6. Sorted logic
terms get sorts:

x: Male mother:[Person → Female]

keep taxonomy of sorts

only unify P(s) with P(t) when sorts are compatible
assumes only “meaningful” paths will lead to []

KR & R © Brachman & Levesque 2005 77

Finally...

7. Directional connectives
given [¬p, q], can interpret as either

from p, infer q (forward)

to prove q, prove p (backward)
procedural reading of ⊃

In 1st case: would only resolve [¬p, q] with [p, ...] producing [q, ...]

In 2nd case: would only resolve [¬p, q] with [¬q, ...] producing [¬p, ...]

Intended application:

forward: Battleship(x) ⊃ Gray(x)

do not want to try to prove something is gray
by trying to prove that it is a battleship

backward: Person(x) ⊃ Has(x,spleen)

do not want to conclude the spleen property for
each individual inferred to be a person

This is the starting point for the procedural representations (later)

