5.

Reasoning with Horn Clauses

KR & R	
--------	--

© Brachman & Levesque 2005

78

Horn clauses

Clauses are used two ways:

- as disjunctions: (rain v sleet)
- as implications: (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause

• positive / definite clause = exactly one +ve literal

e.g. $[\neg p_1, \neg p_2, ..., \neg p_n, q]$

• negative clause = no +ve literals

e.g. $[\neg p_1, \neg p_2, ..., \neg p_n]$ and also []

Note: $[\neg p_1, \neg p_2, ..., \neg p_n, q]$ is a representation for $(\neg p_1 \lor \neg p_2 \lor ... \lor \neg p_n \lor q)$ or $[(p_1 \land p_2 \land ... \land p_n) \supset q]$ so can read as: If p_1 and p_2 and ... and p_n then q

and write as: $p_1 \wedge p_2 \wedge ... \wedge p_n \Rightarrow q$ or $q \leftarrow p_1 \wedge p_2 \wedge ... \wedge p_n$

Only two possibilities:

It is possible to rearrange derivations of negative clauses so that all new derived clauses are negative

Further restricting resolution

Can also change derivations such that each derived clause is a resolvent of the previous derived one (negative) and some positive clause in the original set of clauses

- Since each derived clause is negative, one parent must be positive (and so from original set) and one parent must be negative.
- Chain backwards from the final negative clause until both parents are from the original set of clauses
- Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations

- See previously:
 - example 1, example 3, arithmetic example
- But not:
 - example 2, the 3 block example

An <u>SLD-derivation</u> of a clause *c* from a set of clauses *S* is a sequence of clause $c_1, c_2, ..., c_n$ such that $c_n = c$, and

- 1. $c_1 \in S$
- 2. c_{i+1} is a resolvent of c_i and a clause in S

Write:	$\mathbf{S} \stackrel{SLD}{\to} c$	SLD means S(elected) literals
		L(inear) form
		D(efinite) clauses

Note: SLD derivation is just a special form of derivation and where we leave out the elements of S (except c_l)

In general, cannot restrict ourselves to just using SLD-Resolution

Proof: $S = \{[p, q], [p, \neg q], [\neg p, q] [\neg p, \neg q]\}$. Then $S \rightarrow []$.

Need to resolve some [ρ] and [$\overline{\rho}$] to get []. But *S* does not contain any unit clauses.

So will need to derive both [ρ] and [$\overline{\rho}$] and then resolve them together.

KR & R

© Brachman & Levesque 2005

Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-Resolution

Theorem: SLD-Resolution is refutation complete for Horn clauses: $H \rightarrow []$ iff $H \stackrel{\text{SLD}}{\rightarrow} []$

So: *H* is unsatisfiable iff $H \stackrel{\text{SLD}}{\rightarrow} []$

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause in the $c_1, c_2, ..., c_n$, will be negative

So clauses *H* must contain at least one negative clause, c_1 and this will be the only negative clause of *H* used.

Typical case:

- KB is a collection of positive Horn clauses
- Negation of query is the negative clause

82

Example 1 (again)

Prolog

Horn clauses form the basis of Prolog

Append(nil,y,y) Append(x,y,z) \Rightarrow Append(cons(w,x),y,cons(w,z))

What is the result of appending [c] to the list [a,b] ?

Append(cons(a,cons(b,nil)), cons(c,nil), u) goal

With SLD derivation, can always extract answer from proof

 $H \models \exists x \alpha(x)$

iff

Append(cons(b,nil), cons(c,nil), u')

for some term *t*, $H \models \alpha(t)$

Different answers can be found by finding other derivations

Append(nil, cons(c,nil), u'')

solved: u'' / cons(c,nil)

So goal succeeds with u = cons(a, cons(b, cons(c, nil)))that is: Append([a b],[c],[a b c])

Back-chaining procedure

 $\begin{aligned} & \text{Solve}[q_1, q_2, ..., q_n] = \text{ /* to establish conjunction of } q_i \text{ */} \\ & \text{If } n=0 \text{ then return YES; /* empty clause detected */} \\ & \text{For each } d \in \text{ KB do} \\ & \text{If } d = [q_1, \neg p_1, \neg p_2, ..., \neg p_m] \text{ /* match first } q \text{ */} \\ & \text{ and } \text{ /* replace } q \text{ by -ve lits */} \\ & \text{ Solve}[p_1, p_2, ..., p_m, q_2, ..., q_n] \text{ /* recursively */} \\ & \text{ then return YES} \\ & \text{end for; } \text{ /* can't find a clause to eliminate } q \text{ */} \\ & \text{ Return NO} \end{aligned}$

Depth-first, left-right, back-chaining

- depth-first because attempt p_i before trying q_i
- left-right because try q_i in order, 1,2, 3, ...
- back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog

First-order case requires unification etc.

KR & R

© Brachman & Levesque 2005

86

Problems with back-chaining

Can go into infinite loop

tautologous clause: $[p, \neg p]$ (corresponds to Prolog program with p := p).

Previous back-chaining algorithm is inefficient

Example: Consider 2*n* atoms, $p_0, ..., p_{n-1}, q_0, ..., q_{n-1}$ and 4*n*-4 clauses

 $(p_{i-1} \Rightarrow p_i), (q_{i-1} \Rightarrow p_i), (p_{i-1} \Rightarrow q_i), (q_{i-1} \Rightarrow q_i).$

With goal p_k the execution tree is like this

Is this problem inherent in Horn clauses?

Simple procedure to determine if Horn KB $\models q$.

main idea: mark atoms as solved

1.	If q is marked as solved, then return YES		
2.	Is there a $\{p_1, \neg p_2,, \neg p_n\} \in KB$ such that		
	$p_2,, p_n$ are marked as solved, but the		
	positive lit p_1 is not marked as solved?		
	no:	return NO	
	yes:	mark p_1 as solved, and go to 1.	

FirstGrade example:

Marks: FirstGrade, Child, Female, Girl then done!

Observe:

• only letters in KB can be marked, so at most a linear number of iterations

Note: FirstGrade gets marked since all the negative atoms in the

clause (none) are marked

88

- not goal-directed, so not always desirable
- a similar procedure with better data structures will run in *linear* time overall

KR & R

© Brachman & Levesque 2005

First-order undecidability

Even with just Horn clauses, in the first-order case we still have the possibility of generating an infinite branch of resolvents.

KB: $[\neg \text{LessThan}(0,0)]$ LessThan(succ(x),y) \Rightarrow LessThan(x,y) x/0, y/0 Query: [-LessThan(1,0)]As with full Resolution, LessThan(zero,zero) x/1, y/0 there is no way to detect when this will happen $[\neg \text{LessThan}(2,0)]$ There is no procedure that will test for the x/2, y/0 satisfiability of first-order Horn clauses the question is undecidable

As with non-Horn clauses, the best that we can do is to give control of the deduction to the <u>user</u>

to some extent this is what is done in Prolog, but we will see more in "Procedural Control"