
KR & R © Brachman & Levesque 2005 78

5.

Reasoning with Horn
Clauses

KR & R © Brachman & Levesque 2005 79

Horn clauses

Clauses are used two ways:
• as disjunctions: (rain ∨ sleet)

• as implications: (¬child ∨ ¬male ∨ boy)

Here focus on 2nd use

Horn clause = at most one +ve literal in clause
• positive / definite clause = exactly one +ve literal

e.g. [¬p1, ¬p2, ..., ¬pn, q]

• negative clause = no +ve literals
e.g. [¬p1, ¬p2, ..., ¬pn] and also []

Note: [¬p1, ¬p2, ..., ¬pn, q] is a representation for
(¬p1 ∨ ¬p2 ∨ ... ∨ ¬pn ∨ q) or [(p1 ∧ p2 ∧ ... ∧ pn) ⊃ q]

so can read as: If p1 and p2 and ... and pn then q

and write as: p1 ∧ p2 ∧ ... ∧ pn ⇒ q or q ⇐ p1 ∧ p2 ∧ ... ∧ pn

KR & R © Brachman & Levesque 2005 80

Resolution with Horn clauses

Only two possibilities:

It is possible to rearrange derivations of negative clauses so that
all new derived clauses are negative

Neg Pos

Neg

Pos Pos

Pos

[¬a, ¬q, p] [¬b, q]

[p, ¬a, ¬b][¬c, ¬p]

[¬a, ¬b, ¬c]

[¬a, ¬q, p]

[¬b, q][¬a,¬c, ¬q]

[¬c, ¬p]

[¬a, ¬b, ¬c]
derived positive
clause to eliminate

KR & R © Brachman & Levesque 2005 81

Further restricting resolution

Can also change derivations such that each derived clause is a
resolvent of the previous derived one (negative) and some
positive clause in the original set of clauses

• Since each derived clause is negative, one parent must be positive (and so
from original set) and one parent must be negative.

• Chain backwards from the final negative clause until both parents are from
the original set of clauses

• Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations
• See previously:

– example 1, example 3, arithmetic example

• But not:
– example 2, the 3 block example

c1

c2

c3

cn

cn-1

new

old

KR & R © Brachman & Levesque 2005 82

SLD Resolution

An SLD-derivation of a clause c from a set of clauses S is a
sequence of clause c1, c2, ... cn such that cn = c, and

1. c1 ∈ S
2. ci+1 is a resolvent of ci and a clause in S

Write: S → c

Note: SLD derivation is just a special form of derivation
and where we leave out the elements of S (except c1)

In general, cannot restrict ourselves to just using SLD-Resolution

Proof: S = {[p, q], [p, ¬q], [¬p, q] [¬p, ¬q]}. Then S → [].
Need to resolve some [ρ] and [ρ] to get [].
But S does not contain any unit clauses.

So will need to derive both [ρ] and [ρ] and then resolve them together.

SLD
SLD meansS(elected) literals

L(inear) form
D(efinite) clauses

KR & R © Brachman & Levesque 2005 83

Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLD-
Resolution

Theorem: SLD-Resolution is refutation complete for Horn
clauses: H → [] iff H → []

So: H is unsatisfiable iff H → []

This will considerably simplify the search for derivations

Note: in Horn version of SLD-Resolution, each clause in the
c1, c2, ..., cn, will be negative

So clauses H must contain at least one negative clause, c1
and this will be the only negative clause of H used.

Typical case:

– KB is a collection of positive Horn clauses

– Negation of query is the negative clause

SLD

 SLD

KR & R © Brachman & Levesque 2005 84

Example 1 (again)

[¬Girl]

[¬Child, ¬Female]

[¬Child]

[¬FirstGrade]

[]

Girl

Child Female

FirstGrade

goal

solved

solved

FirstGrade

FirstGrade ⊃ Child

Child ∧ Male ⊃ Boy

Kindergarten ⊃ Child

Child ∧ Female ⊃ Girl

Female

KB

Show KB ∪ {¬Girl} unsatisfiable

SLD derivation alternate representation

A goal tree whose nodes are atoms,
whose root is the atom to prove, and
whose leaves are in the KB

KR & R © Brachman & Levesque 2005 85

Prolog

Append(cons(a,cons(b,nil)), cons(c,nil), u)

Append(cons(b,nil), cons(c,nil), u′)

Append(nil, cons(c,nil), u′′)

solved:

u / cons(a,u′)

u′ / cons(b,u′′)

u′′ / cons(c,nil)

So goal succeeds with u = cons(a,cons(b,cons(c,nil)))
that is: Append([a b],[c],[a b c])

goal

What is the result of appending [c] to the list [a,b] ?

Horn clauses form the basis of Prolog

Append(nil,y,y)

Append(x,y,z) ⇒ Append(cons(w,x),y,cons(w,z))

With SLD derivation, can
always extract answer from proof

H |= ∃x α(x)

iff

for some term t, H |= α(t)

Different answers can be found
by finding other derivations

KR & R © Brachman & Levesque 2005 86

Back-chaining procedure

Solve[q1, q2, ..., qn] = /* to establish conjunction of qi */

If n=0 then return YES; /* empty clause detected */

For each d ∈ KB do

If d = [q1, ¬p1, ¬p2, ..., ¬pm] /* match first q */

and /* replace q by -ve lits */

 Solve[p1, p2, ..., pm, q2, ..., qn] /* recursively */

then return YES

end for; /* can't find a clause to eliminate q */

Return NO

Depth-first, left-right, back-chaining
• depth-first because attempt pi before trying qi

• left-right because try qi in order, 1,2, 3, ...

• back-chaining because search from goal q to facts in KB p

This is the execution strategy of Prolog
First-order case requires unification etc.

KR & R © Brachman & Levesque 2005 87

Problems with back-chaining

Can go into infinite loop
tautologous clause: [p , ¬p] (corresponds to Prolog program with p :- p).

Previous back-chaining algorithm is inefficient

Example: Consider 2n atoms, p0, ..., pn-1, q0, ..., qn-1 and 4n-4 clauses

(pi-1 ⇒ pi), (qi-1 ⇒ pi), (pi-1 ⇒ qi), (qi-1 ⇒ qi).

With goal pk the execution tree is like this

Is this problem inherent in Horn clauses?

pk

pk-1 qk-1

pk-2 qk-2 pk-2 qk-2

...

Solve[pk] eventually
fails after 2k steps!

KR & R © Brachman & Levesque 2005 88

Forward-chaining

Simple procedure to determine if Horn KB |= q.
main idea: mark atoms as solved

FirstGrade example:
Marks: FirstGrade, Child, Female, Girl then done!

Observe:
• only letters in KB can be marked, so at most a linear number of iterations

• not goal-directed, so not always desirable

• a similar procedure with better data structures will run in linear time overall

1. If q is marked as solved, then return YES

2. Is there a {p1,¬p2, ...,¬pn} ∈ KB such that
p2, ..., pn are marked as solved, but the
positive lit p1 is not marked as solved?

no: return NO

yes: mark p1 as solved, and go to 1.

Note: FirstGrade gets marked since
all the negative atoms in the
clause (none) are marked

KR & R © Brachman & Levesque 2005 89

First-order undecidability

Even with just Horn clauses, in the first-order case we still have
the possibility of generating an infinite branch of resolvents.

As with non-Horn clauses, the best that we can do is to give
control of the deduction to the user

to some extent this is what is done in Prolog,
but we will see more in “Procedural Control”

KB:

LessThan(succ(x),y) ⇒ LessThan(x,y)

Query:

LessThan(zero,zero)

[¬LessThan(0,0)]

[¬LessThan(1,0)]

[¬LessThan(2,0)]

...

x/0, y/0

x/1, y/0

x/2, y/0

As with full Resolution,
there is no way to detect
when this will happen

There is no procedure that will test for the
satisfiability of first-order Horn clauses

the question is undecidable

