## 5.

## Reasoning with Horn Clauses

## Horn clauses

Clauses are used two ways:

- as disjunctions: (rain $\vee$ sleet)
- as implications: ( $\neg$ child $\vee \neg$ male $\vee$ boy)

Here focus on 2nd use
Horn clause $=$ at most one + ve literal in clause

- positive / definite clause $=$ exactly one +ve literal

$$
\text { e.g. }\left[\neg p_{l}, \neg p_{2}, \ldots, \neg p_{n}, q\right]
$$

- negative clause $=$ no + ve literals
e.g. $\left[\neg p_{1}, \neg p_{2}, \ldots, \neg p_{n}\right]$ and also []

Note: $\quad\left[\neg p_{1}, \neg p_{2}, \ldots, \neg p_{n}, q\right]$ is a representation for $\left(\neg p_{1} \vee \neg p_{2} \vee \ldots \vee \neg p_{n} \vee q\right)$ or $\left[\left(p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}\right) \supset q\right]$
so can read as: If $p_{1}$ and $p_{2}$ and $\ldots$ and $p_{n}$ then $q$
and write as: $p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n} \Rightarrow q$ or $q \Leftarrow p_{1} \wedge p_{2} \wedge \ldots \wedge p_{n}$

## Resolution with Horn clauses

Only two possibilities:



It is possible to rearrange derivations of negative clauses so that all new derived clauses are negative


## Further restricting resolution

Can also change derivations such that each derived clause is a resolvent of the previous derived one (negative) and some positive clause in the original set of clauses

- Since each derived clause is negative, one parent must be positive (and so from original set) and one parent must be negative.
- Chain backwards from the final negative clause until both parents are from the original set of clauses
- Eliminate all other clauses not on this direct path

This is a recurring pattern in derivations

- See previously:
- example 1, example 3, arithmetic example
- But not:
- example 2, the 3 block example



## SLD Resolution

An SLD-derivation of a clause $c$ from a set of clauses $S$ is a sequence of clause $c_{1}, c_{2}, \ldots c_{n}$ such that $c_{n}=c$, and

1. $c_{1} \in S$
2. $c_{i+1}$ is a resolvent of $c_{i}$ and a clause in $S$

Write: $S \xrightarrow{\text { SLD }} \quad$ SLD means S(elected) literals
Write: $\quad S \xrightarrow{\text { SLD }} \quad \begin{aligned} & \text { L(inear) form } \\ & \text { D (efinite) clauses }\end{aligned}$
Note: SLD derivation is just a special form of derivation and where we leave out the elements of $S$ (except $c_{l}$ )

In general, cannot restrict ourselves to just using SLD-Resolution
Proof: $S=\{[p, q],[p, \neg q],[\neg p, q][\neg p, \neg q]\}$. Then $S \rightarrow[]$.
Need to resolve some $[\rho]$ and $[\bar{\rho}$ ] to get [] .
But $S$ does not contain any unit clauses.
So will need to derive both [ $\rho$ ] and $[\bar{\rho}$ ] and then resolve them together.

## Completeness of SLD

However, for Horn clauses, we can restrict ourselves to SLDResolution

Theorem: SLD-Resolution is refutation complete for Horn clauses: $H \rightarrow[]$ iff $H \xrightarrow{\text { sLD }}[]$

So: $H$ is unsatisfiable iff $H \xrightarrow{\text { SLD }}[]$
This will considerably simplify the search for derivations
Note: in Horn version of SLD-Resolution, each clause in the $c_{1}, c_{2}, \ldots, c_{n}$, will be negative

So clauses $H$ must contain at least one negative clause, $c_{l}$
and this will be the only negative clause of $H$ used.
Typical case:

- KB is a collection of positive Horn clauses
- Negation of query is the negative clause


## Example 1 (again)

|  | SLD derivation | alternate representation |
| :---: | :---: | :---: |
| KB | [ $\neg$ Girl] | Girl ${ }^{\text {goal }}$ |
| FirstGrade | [ $\neg$ Child, $\neg$ Female] | $\bigcirc$ |
| FirstGrade $\supset$ Child | \| | Child Female |
| Child $\wedge$ Male $\supset$ Boy | [ $\neg$ Child] |  |
| Kindergarten $\supset$ Child |  |  |
| Child $\wedge$ Female $\supset$ Girl | [ $\neg$ FirstGrade] | FirstGrade |
| Female |  |  |
|  | [] |  |

Show KB $\cup\{\neg$ Girl $\}$ unsatisfiable
A goal tree whose nodes are atoms, whose root is the atom to prove, and whose leaves are in the KB

## Prolog

## Horn clauses form the basis of Prolog

Append(nil, $y, y$ )
$\operatorname{Append}(x, y, z) \Rightarrow \operatorname{Append}(\operatorname{cons}(w, x), y, \operatorname{cons}(w, z))$

With SLD derivation, can always extract answer from proof

$$
H \mid=\exists x \alpha(x)
$$

iff
for some term $t, H \mid=\alpha(t)$
Different answers can be found by finding other derivations

What is the result of appending $[c]$ to the list $[\mathrm{a}, \mathrm{b}]$ ?
Append(cons(a,cons(b,nil)), cons(c,nil), $u$ ) goal

$$
u / \operatorname{cons}\left(\mathrm{a}, u^{\prime}\right)
$$

Append(cons(b,nil), cons(c,nil), $\left.u^{\prime}\right)$

$$
u^{\prime} / \operatorname{cons}\left(b, u^{\prime \prime}\right)
$$

Append(nil, cons(c,nil), $u^{\prime \prime}$ )
solved: $u^{\prime \prime} / \operatorname{cons}(\mathbf{c}$, nil)
So goal succeeds with $u=\operatorname{cons}(\mathrm{a}, \operatorname{cons}(\mathrm{b}$, cons(c,nil))) that is: Append([a b],[c],[a b c])

## Back-chaining procedure

Solve $\left[q_{1}, q_{2}, \ldots, q_{n}\right]=\quad /^{*}$ to establish conjunction of $q_{i}$ */
If $n=0$ then return YES; /* empty clause detected */
For each $d \in \mathrm{~KB}$ do
If $d=\left[q_{1}, \neg p_{1}, \neg p_{2}, \ldots, \neg p_{m}\right] \quad / *$ match first $q^{* /}$ and $\quad{ }^{*}$ replace $q$ by -ve lits */
Solve $\left[p_{1}, p_{2}, \ldots, p_{m}, q_{2}, \ldots, q_{n}\right] / \star$ recursively */
then return YES
end for; /* can't find a clause to eliminate $q^{* /}$
Return NO
Depth-first, left-right, back-chaining

- depth-first because attempt $p_{i}$ before trying $q_{i}$
- left-right because try $q_{i}$ in order, $1,2,3, \ldots$
- back-chaining because search from goal $q$ to facts in KB $p$

This is the execution strategy of Prolog
First-order case requires unification etc.

## Problems with back-chaining

Can go into infinite loop
tautologous clause: $[p, \neg p]$ (corresponds to Prolog program with $p:-p$ ).

## Previous back-chaining algorithm is inefficient

Example: Consider $2 n$ atoms, $p_{0}, \ldots, p_{n-1}, q_{0}, \ldots, q_{n-1}$ and $4 n-4$ clauses

$$
\left(p_{i-1} \Rightarrow p_{i}\right),\left(q_{i-1} \Rightarrow p_{i}\right),\left(p_{i-1} \Rightarrow q_{i}\right), \quad\left(q_{i-1} \Rightarrow q_{i}\right)
$$

With goal $p_{k}$ the execution tree is like this


Solve[ $p_{k}$ ] eventually fails after $2^{k}$ steps!

Is this problem inherent in Horn clauses?

## Forward-chaining

Simple procedure to determine if Horn $\mathrm{KB} \mid=q$.
main idea: mark atoms as solved

1. If $q$ is marked as solved, then return YES
2. Is there a $\left\{p_{1}, \neg p_{2}, \ldots, \neg p_{n}\right\} \in \mathrm{KB}$ such that $p_{2}, \ldots, p_{n}$ are marked as solved, but the positive lit $p_{1}$ is not marked as solved?
no: return NO
yes: $\quad \operatorname{mark} p_{1}$ as solved, and go to 1.

## FirstGrade example:

Marks: FirstGrade, Child, Female, Girl then done!
$\begin{array}{ll}\text { Note: } & \text { FirstGrade gets marked since } \\ \text { all the negative atoms in the } \\ \text { clause (none) are marked }\end{array}$

## Observe:

- only letters in KB can be marked, so at most a linear number of iterations
- not goal-directed, so not always desirable
- a similar procedure with better data structures will run in linear time overall

Even with just Horn clauses, in the first-order case we still have the possibility of generating an infinite branch of resolvents.

KB:
LessThan $(\operatorname{succ}(x), y) \Rightarrow \operatorname{LessThan}(x, y)$
Query:
LessThan(zero,zero)

As with full Resolution, there is no way to detect when this will happen

There is no procedure that will test for the satisfiability of first-order Horn clauses
the question is undecidable


As with non-Horn clauses, the best that we can do is to give control of the deduction to the user
to some extent this is what is done in Prolog, but we will see more in "Procedural Control"

