
Verifying Extended Criteria for the Interoperability of
Security Devices

Maurizio Talamo3,1, Franco Arcieri1, Giuseppe Della Penna2, Andrea Dimitri1,
Benedetto Intrigila3, and Daniele Magazzeni2

1 Nestor Lab - University of Roma “Tor Vergata”, Italy
2 Department of Computer Science, University of L’Aquila, Italy

3 Department of Mathematics, University of Roma ”Tor Vergata”, Italy

Abstract. In the next years, smart cards are going to become the main personal
identification document in many nations. In particular, both Europe and United
States are currently working to this aim. Therefore, tens of millions of smart
cards, based on hardware devices provided by many different manufacturers, will
be distributed all over the world, and used in particular to accomplish the security
tasks ofelectronic authenticationandelectronic signature. In this context, the
so calledCommon Criteriadefine the security requirements for digital signature
devices. Unfortunately, these criteria do not address any interoperability issue
between smart cards of different manufacturers, which usually implement digital
signature process in still correct but slightly different ways.
To face the interoperability problem, we realized a complete testing environment
whose core is theCrypto Probing Systemc©Nestor Lab, an abstract interface to
a generic cryptographic smart card, embedding a standard model of the correct
card behavior, which can be used to test the digital signature process behavior,
also in the presence of alternate or disturbed command sequences, in conjunction
with automatic verification techniques such asmodel checking. The framework
allows to verifyabstract behavior modelsagainstreal smart cards, so it can be
used to automatically verify the Common Criteria as well as the extended inter-
operability criteria above and many other low-level constraints. In particular, in
this paper we show how we can verify that the card, in the presence of a sequence
of (partially) modified commands, rejects them without any side effect, remain-
ing usable, or accepts them, generating a correct final result. To exemplify our
framework, in the present paper we show how it can be used to check that the
card [STM-Incrypto34] is actually robust with respect to unknown or alternate
command sequences during the digital signature process. Even in this simple ex-
perimentation, it has been possible to point out some anomalous behavior of the
card, such as the unexpected acceptance of wrong commands. Therefore, this ver-
ification can be considered as an instance of a whole new kind of testing processes
for the digital signature devices.

1 Introduction

Starting from 2010, theEuropean Citizen Card[1] is going to be developed and dis-
tributed to all European citizens. In the next years, tens of millions of smart cards, based
on hardware devices provided by many different manufacturers, will be distributed in



Europe, and one of the main purposes of such cards will be to provide an easy and safe
way for the European citizens to generate and use security data forelectronic authenti-
cationand forelectronic signature.

Therefore, many European countries have started projects to test and validate such
cards before they are put on the market. In particular, the problem has been faced in
the Italian National Project for Electronic Identity Card [2], designed by one of the
authors of this paper. Among the other issues addressed by this project, there is the very
important problem of theinteroperabilitybetween smart cards produced by different
manufacturers.

In this context, the so calledCommon Criteria(ISO/IEC 15408, [3]) and the CWA-
1469 [4] standards define the requirements of security devices for digital signature con-
forming to the annex III of EU directive 1999/93/CE, and the criteria to be followed
to verify this conformance. In particular, they define a set of general rules and formats
for the microprocessor of a smart card to work correctly as a digital signature device.
Similar standards are going to be defined for other security tasks, like the electronic
authentication based on smart cards.

The digital signature process, defined by these standards, is coherent and unitary
but its implementation is different from a smart card to another.

Indeed, smart cards should generally communicate with their readers using the
APDU protocol defined by ISO 7816-4 and 7816-8, but smart card families can im-
plement the APDU protocol in a variety of ways, and the Common Criteria compliancy
only certifies that, given thespecificsequence of commands implemented by the smart
card manufacturer, the card generates the required digital signature respecting the secu-
rity requirements requested by the Common Criteria.

In this context, much responsibility is left to the card readers and client applica-
tions, which must have intimate knowledge of the specific command set of the smart
card they are communicating with. Observe that one relevant problem is related toextra-
capabilitiesadded to the software by some weakness in the production process. In par-
ticular, one can consider: new commands not included in the standards, the possibility
of inappropriately storing relevant information related to the transaction and so on. It
is clear that due to the complexity of the production process, which is moreover not
standardized, even a trustable producer cannot certify the complete trustability of the
software. This makes the signature of the software only a partial solution: ”the signature
guarantees the origin of the cardlet, not that it is innocuous” [5]. Another possibility is
to make an effort to standardize the production process and make use of suitable soft-
ware engineering approaches such asCorrectness By Construction[6], [7]. The current
situation, described above, makes however this solution not viable.

So we are faced with the problem of setting up a comprehensive verification pro-
cess able to severely test a given card and its software applications. The task of this
verification is to give (at least partial) answers to the many questions not addressed by
the standards. What happens if, for example, a card receives a command sequence that
is certified as correct for another card? This may happen if the card client cannot adapt
to its specific command set, or does not correctly recognize the card. Obviously, this
problem may be also extended to a more general context, where the card is deliberately
attackedusing incorrect commands.



Unfortunately, the common criteria do not address any interoperability issue of this
kind. This could lead to many problems, especially when designing the card clients,
which should potentially embed a driver for each family of card on the market, and be
easily upgradable, too. This would be difficult and expensive, and could slow down the
diffusion of the smart cards. Therefore, the interoperability problem must be addressed
in detail.

1.1 Our Contribution

To face the interoperability problem, we realized a complete testing environment whose
core is theCrypto Probing Systemc©Nestor Lab, an abstract interface to a generic
cryptographic smart card, which embeds a standard model of the correct card behavior.

The Crypto Probing System can be used to transparently interface with different
physical smart cards and test the digital signature process. Indeed, it will be used by the
Italian Government to test the card conformance to the Italian security and operational
directives for the Electronic Identity Card project.

However, the Crypto Probing System can be also used to test the digital signature
process behavior in the presence of alternate or disturbed command sequences. Indeed,
in this paper we will use this feature to check a first interoperability issue, i.e., auto-
matically and systematically verify the card behavior when stimulated with unexpected
input signals and/or unexpected sequences of commands or parameters. Note that, de-
spite of this simple level of heterogeneity, the common criteria cannot ensure the smart
cards interoperability even in this case.

Verifying that a specific card is compliant with such extended criteria requires a ver-
ification that is much more extensive than the usual standard black box testing process.
Therefore, we decided to exploitmodel checking techniquesto automate the verifica-
tion process. We decided to use the model checker Murϕ [8]. Actually we used the
tool CMurϕ [9], realized by some of the authors with other researchers, which extends
Murϕ, among others, with the capability of use external C/C++ functions. The model
checker will be interfaced to the Crypto Probing System and through it, transparently,
to the smart card.

To validate our integrated verification framework, in the present paper we show an
experiment used to check that the card [STM-Incrypto34] is actually compliant with the
extended criteria mentioned above. This verification can be considered as an instance
of a whole new kind of testing processes for the digital signature devices.

1.2 Related Works

Although much research is being done in the field of smart card verification[6, 10, 11],
most of the works in the literature address the more generic problem of (Java)byte
code verification. In these works, the verification is performed on the applications that
should run over the card hardware and operating system, to check if the code respects a
set of safety constraints. From our point of view, the major drawback of this approach
is that it assumes the correctness of the smart card hardware/firmware and of the Java
Virtual Machine which is embedded in the card. Thanks to our abstract machine, the
Crypto Probing System, in this work we show how such application code can be tested



directly on the real card. In this way, we are able to validate both how the code affects
the behavior of the card, and how the card hardware can affect the code execution.

Moreover, currently we are not interested in testing a specific smart card software,
but rather in verifying the correctness of the smart card output after a sequence of pos-
sibly disturbed or unexpected commands, and in particular we aim to use these experi-
ments to address the smart card interoperability issue.

2 Extending the Common Criteria

As mentioned above, the Common Criteria [3] define a set of general rules for a smart
card-based digital signature process to workcorrectly. However, there are technical
aspects that the Common Criteria do not address at all, being too ”high level“ to
analyze issues related to the card application code. For instance, no requirements are
given for the card behavior when an unexpected command is received during the digital
signature process. In this case, what should be defined as ”the correct behavior” of the
card processor?

We considered the followingextended criteriafor a correct behavior:

– if a result can be obtained it is always the correct one; or
– the wrong command is rejected but the card remains usable.

Observe that the second requirement is needed to avoid denial of service attacks or
malfunctioning. Here we assume that an error in the command (as opposed to an error
in parameters) should not compromise the availability of the card. This assumption can
be of course questioned, and this shows the need of more detailed criteria.

2.1 Robustness of the Signature Process

As a first example of extended smart card security property, in this paper we propose
the following problem related to the digital signature process.

Step

1

Step

2
Step

11
OK... ... ...

start next next next next

Fig. 1. Digital Signature Process Model

The digital signature process can be generally split in eleven main steps [4]. At
each step, the card expects a particular set of commands and parameters to proceed to
the next step:



1. Logically reset the Smart Card.
2. Change directory to the electronic signature directory.
3. Select the public certificate (file) for electronic signature.
4. Define the selected public certificate (file) as the public certificate to be used for the

next operation of electronic signature.
5. Select, inside the smart card, the private key (security object) to be used for the next

operation of electronic signature.
6. Ask the smart card for a Random Number (security operation).
7. Give a random number to the smart card (security operation).
8. Ask the smart card to enable the usage of the selected private key for a signature

operation (security operation).
9. Ask the smart card for a Random Number (security operation).

10. Give a random number to the smart card (security operation).
11. Give to the smart card the buffer to be signed and get the resulting signature (secu-

rity operation).

An abstract view of the process is sketched in Fig.1).

Now we want to consider possible random disturbances in the commands sent to
the smart card. In the presence of such disturbances, we may expect the process to
behave, at each step, as sketched in Fig.2. In other words, as discussed above, either
the invalid commands is refused leaving the process unaltered, or the wrong command
is accepted but the final result isidentical to the one obtained with the right command.
The existence oferroneous accepted commandis due to the presence of bits which are
uninfluentialon the parsing of the command syntax.

Fig. 2. Disturbed Step

In this scenario, we want to check thesmart card robustness. That is, we want to
verify that any possible disturbance iscorrectly handled by the card, wherecorrect-
nessrefers to the model discussed above. It is clear that such a verification cannot be
performed manually, but requires an automatic framework where the model of Fig. 2
can be analyzed and exhaustively compared with the behavior or the real smart card



hardware. As we will see in Section 4, model checking is a perfect candidate for this
task.

3 The Crypto Probing System

The core of a smart card is itsmicroprocessor, which contains, on board, a crypto-
graphic processor, a small EEPROM random access memory (≈ 64 KBytes), an oper-
ating system and a memory mapped file system.

The microprocessor can execute a restricted set of operations named APDUs (Ap-
plication Control Data Units), which can be sent from external software applications
through a serial communication line.

The standard ISO 7816 part 4, specifies the set of APDU’s that any compatible smart
card microprocessor must implement. In particular, an APDU consists of a mandatory
header of 4 bytes: the Class Byte (CLA), the Instruction Byte (INS) and two parameter
bytes (P1,P2). The header can be followed by a conditional body of variable length,
which is composed by the length (in bytes) of the data field (Lc), the Data field itself
and the maximum number of bytes expected in the data field of the response (Le).
Responses to any APDU are encoded in a variable length data field and two mandatory
trailer bytes.

However, as described in the introduction, the microprocessor manufacturers de-
velop the APDUs with some deviations from the standards or, in some cases, they create
new APDUs not defined by the standards.

Therefore, in order to interface with any kind of card, the client applications should
know in advance their command set: no insurance is given that the same APDU se-
quence will be accepted by all the cards. To investigate this issue, we developed the
Crypto Probing System (CPS), an executable abstract smart card model, with a simpli-
fied set of commands that can act as amiddlewarebetween the external applications
and the real smart cards.

The CPS is able to translate its simplified instructions to the corresponding sequence
of APDUs to be sent to the connected physical smart card and to translate the smart
card responses in a common format. Moreover, to further simplify the interface with
the smart card, the CPS knows in advancethe correct sequence of APDUsto be sent
in each step of the digital signature process, and is able to generatealternate command
sequencesto test the card responses in different situations. In this way, the CPS offers a
simple interface for testing applications to verify the process correctness and robustness
on different physical devices.

The CPS, whose overall architecture is shown in Fig. 3, can be invoked via com-
mand line, to interactively test the command sequences, or used as a daemon, which
stays in execution and accepts commands on TCP/IP connections. The CPS instruction
set is the following.

– reset : resets the card.
– start : initializes the signature process.
– next : executes the next command in the process sequence using the correctcla

andins values and advances to the next step.



Command parser

TCP/IP Server

Command 
interpreter

Physical smart 
card interface

General Smart 
Card Interface 

Library

Console interface

Smart card 
command flows

Perturbation 
probe

Fig. 3. Architecture of the Crypto Probing System

– stay [cla | ins] [r | s] [leave | restore] : executes the next
command in the process sequence, applying a disturbance to itsCLA or INS pa-
rameters, but does not advance to the next step. In particular, the[r | s] modi-
fiers specify a random (uniform generator rand48) or sequential (starting from the
current value of the parameter) disturbance, whereas the[leave | restore]
modifiers tell the CPS to leave the last value or restore the original value of the
other non disturbed parameter.

– accept : executes the next command in the process sequence using the same val-
ues ofCLA andINS of the laststay command and advances to the next step.

All the instructions above return:

1. the current hexadecimal node number (01..0B), representing the reached step in the
signature process,

2. the values ofCLA andINS sent to the card by the last command,
3. the result code of the command (where a nonzero value indicates an error condi-

tion),
4. the overall status of the signature process, i.e.,

– TERMINATED if the card has correctly reached the final step of the process,
obtaining the same result as the right sequence,

– UNTERMINATED if the card has not still reached the final step,
– or WRONG if the card has reached the final step but with an incorrect result,

that is with a result different from the one of the right sequence.



After a start , eachnext sends the next correct APDU to the card and advances
to the next step of the process. After the lastnext command is issued, the card must
return a TERMINATED status.

Thestay command sends to the card adisturbedversion of the next correct APDU,
but does not advance to the next step of the process. This is indeed accomplished by
issuing anaccept command, which commits the previous modified command gener-
ated by astay and proceeds with the process.

In other words,stay can be used to test the card response to a modified command
at a specific step, whereas the combinationstay andaccept can be used to build a
process containing one or more modified commands.

If the cards behaves accordingly to the extended criteria mentioned above, either a
modified command is rejected but the card remains in the current state and is able to
reach a TERMINATED status, or the card always remains in the UNTERMINATED
status. Of course, what we want to exclude is the possibility thata perturbed command
generates a different signed document: this corresponds to never reach the WRONG
status.

An example of CPS session is shown in Fig 4, where the lines beginning with a>
represent the input commands, followed by the CPS response.

> reset
> start
> stay cla r restore
01 D9 A4 6986 UNTERMINATED
> stay ins r leave
01 B4 86 6986 UNTERMINATED
> next
01 00 A4 0000 UNTERMINATED
> next
02 00 A4 0000 UNTERMINATED
> stay cla s leave
03 01 A4 0000 UNTERMINATED
> accept
03 01 A4 0000 UNTERMINATED
> stay cla s leave
04 01 22 0000 UNTERMINATED
> accept
04 01 22 0000 UNTERMINATED
> next
05 00 21 6986 UNTERMINATED
> stay ins r leave
05 00 4E 6986 UNTERMINATED
...
> next
0A 80 86 0000 UNTERMINATED
> next
0B 0C 2A 0000 TERMINATED
> next
0B 0C 2A 0000 TERMINATED

Fig. 4. Example of signature session on the CPS



4 The Role of Model Checking

The compliancy of a smart card to the Common Criteria is a testing problem, i.e., it can
be certified by manually or semi-automatically by reproducing the context and events
described by each criterion and then verifying the expected card behavior.

However, more complex correctness or security properties, like those proposed in
this paper (Section 2.1), which work on a lower level, cannot be handled by testing,
and require more powerful verification methods. Using model checking it is possible to
exhaustively check the compliance of the smart card w.r.t. anextendedmodel such as
the one of Fig. 2.

Indeed, from a conceptual point of view, model checking can be used to create an ex-
ecutable model of an hardware/software device, analyze all its possible execution states
(reachability analysis), and finally check that any of such states satisfy a set of proper-
ties (invariants). Observe that there are basically two possible implementation of model
checking techniques:symbolic(i.e. OBDD-based) algorithms andexplicit algorithms.
In our context, due to the need of a real time connection with the smart card system,
symbolic algorithms are completely ruled out. As already mentioned, we decided to
use the model checker Murϕ [8], which implements explicit algorithms. Actually we
used the tool CMurϕ [9], realized by some of the authors with other researchers, which
extends Murϕ, among others, with the capability of use external C/C++ functions.

Of course, as it well known, when the size of the state space is too large, the so
calledstate space explosionphenomenon occurs [12]. That is, the model checker cannot
complete the verification problem. To attenuate this problem, a possibility is to not
consider the set of all possible state but a large subset. Another strategy is based on
introducing equivalence relations between states so to check only one state in each
equivalence class. Finally, another possibility is to distribute the verification task using
distribute architectures. The implementation of the latter strategy will be considered in
a future work. In the present work we use the former one.

In our context, acorrect smart card is modeled as a finite automaton like the one
shown in Fig. 2. This is enough to check the digital signature robustness property, but
the model may be extended and enriched to support the verification of almost any prop-
erty: indeed, model checking is able to deal with very extended systems, having millions
of states [13]. Disk-based technologies, implemented by some of the authors with others
researchers, allows the verifications of systems withbillions of states [14].

Then, the possible disturbances (or - if we think to malicious disturbances - smart
cardattacks) are also modeled within the verifier: i.e., we have a “card model” and “a
disturbance model” (or an “attacker model”) that will be run in parallel by the verifier.
Finally, the verifier is interfaced with a real smart card (see Section 5 for details).

In this framework, model checking will be used to generate all the possible distur-
bances (e.g., unexpected commands) that can be carried on the smart card (or, at least,
a large subset of such possible disturbances). Then, these actions will be performed on
the real smart card, and their results compared with the ones of the correct smart card
model.

The property to verify is clearly that the real card has the desired correct behavior
in any possible situation.



5 Integrating the Crypto Probing System with the CMurϕ Model
Checker

Having clarified the role of model checking in this extended smart card verification
framework, in this Section we describe how this technique has been actually integrated
with a smart card system to check the digital signature robustness property. However,
as we will see, the presented methodology is very general, so it could be used to verify
many other extended smart card properties.

5.1 The CMurϕ Model Checker

In this paper we use the CMurϕ tool [9]. Of course, our framework could also be used
with different model checkers (however, as observed before, they must use explicit al-
gorithms).

In CMurϕ, the system to be verified is described through a set of (state) variables,
which uniquely define the system state, and the system dynamics is given by a set of
language constructs called (transition)rules. Finally, the properties to be verified are
encoded in boolean expressions calledinvariants.

However, the most useful aspect of CMurϕ is its extension [15], that allows to
embed externally defined C/C++ functions in the modeling language.

Namely, in its standard working, Murϕ is initially given a system.m file con-
taining the description of the system under analysis. Then, Murϕ generates a C++ file
system.C , which contains the behavior of the system translated in C++.

With CMurϕ, it is possible to use the keywordexternfun in thesystem.m file
to declare and then use functions defined in external C/C++ source files directly in the
model. The only constraint to these functions is that they should not have collateral
effects and must accept/return parameters of double and integer type only.

This feature will be used to interface CMurϕ with the real smart card device through
a suitable interface library, as described in the following sections.

5.2 The CMurϕ Model

The first part of the CGMurϕ model consists of thedeclarative statements. Fig-
ure 5 shows the declaration of constants, datatypes, and external functions (the
externproc construct refers to a procedure without a returning value).

Moreover, the state of the system is represented by the set of thestate variables.
Since our system represents theinteraction between the user and the smart card, we
consider the internal state of the smart card (i.e. its current node within the authen-
tication process and its status) and the possible actions of the user (i.e. the type of
disturbance to apply and the node to be disturbed).

As second step, we have to define thestart states, representing the first states of each
authentication session we want to validate. To do this, as shown in Figure 6, we use the
ruleset x construct that allows to consider each value expected for variablex and
use it in the following start state definition. Note that therestart external function
resets the smart card initializing its internal variables.



const
NUM_TESTS : 250;
NUM_DISTURBANCES : 4;

type
node_id_type : 0..11; --0=default initial node
dist_node_type : 0..11;
dist_id_type : 0..NUM_DISTURBANCES*NUM_TESTS;

var --state description
curr_node: node_id_type; --current node id
status : 0..2; --UNTERMINATED,TERMINATED,WRONG
dist_node : dist_node_type; --node to be disturbed
dist_id : dist_id_type; --disturbance to apply

externfun next() : int_type "protocol.h";
externfun accept() : int_type;
externfun login() : int_type;
externproc stay(dist_id : int_type);

Fig. 5. Constants, datatypes, state description and external functions within the CGMurϕ Model

ruleset dist_node : 2..9 do
ruleset dist_id : dist_id_type do

startstate "Start Authentication"
dist_node := dist_node;
dist_id := dist_id;
curr_node := 0;
status := restart(dist_node,dist_id);

end ;
end ;

end ;

Fig. 6. Start states definition

In order to describe the evolution of the system, we have to define theguarded
transition rules. Figure 7 shows the three main rules of the model:

– next: this rule simply models a normal command sent to the smart card;
– disturb : this rule sends a disturbed command to the smart card (through the

stay function). Moreover, depending on the returned value (obtained with the
check_CODE function), it sends the commandaccept or next according to
their semantics given in Section 3.

– end authentication: this rule is executed at the end of the authentication process
and checks the final status of the smart card (i.e. if the signature is correct or not).

Note that the rules are mutual exclusive, thanks to the use of the guards.
Finally, we have to define theinvariant, that is the property which has to be sat-

isfied in each state of the system. In our case, we want the status of the smart card to
be different fromWRONGduring each step of the authentication process, as shown in
Figure 8.



rule "next" (status=0 & current_node!=dist_node) ==>
begin

status := next();
if (check_CODE()!=1) then --ERROR

dump_NODE_CODE();
endif ;
status := get_STATUS();
curr_node := get_NODE();

end ;

rule "disturb" (status=0 & curr_node=dist_node) ==>
begin

stay(disturbance_id);
if (check_CODE()=1) then

dump_DISTURB(1); --IGNORE
status := accept();

else
dump_DISTURB(0); --ACCEPT
status := next();

endif ;

status := get_STATUS();
curr_node := get_NODE();

end ;

rule "end authentication" (status=1) ==>
begin

dump_STATUS();
end ;

Fig. 7. Guarded Transition Rules

invariant "correct status"
(status != 2) --i.e. status!=’WRONG’

Fig. 8. Invariant Property

5.3 The Integrated Framework

In our verification framework, the CMurϕ model must be able to access and drive a real
smart card.

To this aim, we set up an environment where a smart card is connected to a
computer-based host running the Linux operating system. The CPS (see section 3) dae-
mon runs on the same machine and interfaces with the card, whereas a simple TCP/IP
connection library, whose functions are exported into the CMurϕ model, allows the
verifier to talk with the CPS.

At this point, given a model of the digital signature process, we can program CMurϕ
to exhaustively test the card behavior by simulating all the possible scenarios. In this
way, we are able to verify the compliance of the smart card w.r.t. the model.



6 Experimentation

To verify the smart card behavior in the presence of erroneous commands during the
digital signature process described in Section 2, we used the CMurϕ-based model pre-
sented in Section 5 and the framework as described in the following.

Let s1, . . . , s11 be the steps of the digital signature process. Moreover, letc(si) be
the command that should be sent to the card at the stepsi to correctly proceed to the
next stepsi+1. Finally, letdisturb(x) a function that, given any binary datax, returns
it with an added random disturbance.

Then, according to the CMurϕ model described in the previous section, the verifi-
cation procedure is summarized by the algorithm shown in Figure 9.

for i = 1 to 11 {
for k = 1 to MAX_TESTS {

Start a new signature session
for j = 1 to i-1

send c(sj) to the card
/* now we are at step si − 1 */
let cr = disturb(c(sj))
send cr to the card
let resp = the current card status
if (resp == Error) /* we are still at step si − 1 */

send c(sj) to the card
/* otherwise the disturbed command has been accepted, so we are at

step si */
for j = i+1 to 11

send c(sj) to the card
/* now we should be at the final step */

verify the card output validity
}

}

Fig. 9. Experiment 1: one disturbed command in each authentication session

In other words, we test each stepsi of the process for robustness with respect to
MAXTESTS randomly generated bad commands. To this aim, we first executesi−1

correct steps, and then issue a disturbed command. The card can accept the command
and go to statesi, or refuse it and stay in statesi−i. In either case, we send the remaining
correct commands until we are in states11 and then test the card output.

In a first experiment, we sentonly onedisturbed command in each authentication
session, obtaining the results shown in Table 1 (row “Exp. 1”). The smart card behavior
was acceptable, since it did not produce any incorrect results.

However, we may note that the 1.9% of the modified commands sent to the smart
card was accepted as a correct one and the execution proceeded to the next step in the
digital signature process. Apparently, this did not cause any problem, since the final re-
sult was correct, but leaves some doubts about the card software. We may suppose that
the card does not support only one digital signature process, but several variants trig-
gered by alternate commands in some steps. In the worst case, however, these modified
commands may create a “hidden damage” to the card, that may show its consequences
only later.



To further investigate this issue, as second experiment, we stressed the smart card
in a more intensive way. Namely, we sent a disturbed commandat each stepof the
authentication process. The new verification procedure is sketched in Figure 10 and the
results are shown in row “Exp. 2” of Table 1.

for k = 1 to MAX_TESTS {
Start a new signature session.
for j = 1 to 11 {

let cr = disturb(c(sj))
let dr = disturb(d(sj))
send 〈cr, dr〉 to the card
if receive ()==Error //We are still at step si − 1

send 〈c(sj), d(sj)〉 to the card
/*else the disturbed command is accepted*/

}
/* now we should be at the final step */
verify the card output validity

}

Fig. 10.Experiment 2: a disturbed command at each step of the authentication process

Total # of # of modified # of rejected # of accepted # of incorrect
commands sentcommands modified commandsmodified commands results

Exp. 1 99396 9036 8864 (98.1%) 172 (1.9%) 0

Exp. 2 11000 9000 8907 (98.7%) 93 (1.3%) 0
Table 1.Experimental results

Again, the card has a correct behavior, but continues to accept a small percentage of
modified commands as correct. However, an analysis of the reasons of this strange be-
havior is beyond the scope of the present paper. With this last experiment, we achieved
our aims, showing that the card under analysis is robust with respect to any altered
command sequence.

Observe that the full interaction between the model checker and the smart card,
related to a single command, requires on the average 0.8 seconds. Thus, the two ex-
periments took about 22 hours and 2 hours, respectively. However, to accelerate more
complex verification tasks, we plan to make use of distributed verification architectures,
which have been already developed for the Murphi verifier [16].

7 Conclusions

In this work, we have shown an integrated environment to perform the verification of
smart card based signature devices, with respect to models of correct behavior which
can be much more detailed than those considered in the Common Criteria. Since this



verification task goes beyond simple black box testing we integrated a model checker
in the verification environment.

We tested a commercial signature device, systematically targeted with wrong com-
mands while executing the signature of a fixed document. While the card has shown a
correct behavior, with respect to a reasonable model, even in this simple experimenta-
tion it has been possible to point out some anomalous behavior such as the acceptance
of wrong commands.

Many other verifications can be performed on smart cards using our integrated
framework, addressing aspects not covered by the common criteria: for instance, cur-
rently we do not know if and how a card microprocessor would react toconcurrent
signing sessions.

Beyond such specific verifications, our general objective is to set up a whole family
of behavioral models - defining in a (hopefully) complete way the correct behavior of a
card-based digital signature device, as well as a verification environment able to prove
or, at least to give strong evidence, that the system is compliant with respect to all
models.

We think that if this task is accomplished, this will be a very relevant step towards
the solution of the interoperability problem, as the cards so certified would perform well
even in the most challenging situations.

References

1. CEN: TC224 WG15.
2. D.M. 8 novembre 2007: S.O. n. 229 della G.U. 261 del 9/11/2007 Regole tecniche della

Carta d’identita elettronica (Technical Rules for the Eletronic Identity Card).
3. Common Criteria for Information Technology Security Evaluation: Part 1: Introduction and

general model 11, version 3.1, revision 1, ccmb-2006-09-001, september 2006. 5. common
criteria for information technology security evaluation - part 2: Security functional require-
ments12, version 3.1, revision 1, ccmb-2006-09-002, september 2006. 6. common criteria
for information technology security evaluation - part 3: Security assurance requirements13,
version 3.1, revision 1, ccmb-2006-09-003, september 2006.

4. CEN WORKSHOP AGREEMENT: Cwa 14169, march 2004.
5. Leroy, X.: Computer security from a programming language and static analysis perspective.

In: ESOP. (2003) 1–9.
6. Toll, D.C., Weber, S., Karger, P.A., Palmer, E.R., McIntosh, S.K.: Tooling in Support of

Common Criteria Evaluation of a High Assurance Operating System. IBM Thomas J. Wat-
son Research Center Report (2008)

7. Chapman, R.: Correctness by construction: a manifesto for high integrity software. In: SCS
’05: Proceedings of the 10th Australian workshop on Safety critical systems and software,
Darlinghurst, Australia, Australia, Australian Computer Society, Inc. (2006) 43–46.

8. Murphi Web Page:http://verify.stanford.edu/dill/murphi.html
9. CMurphi Web Page: http://www.di.univaq.it/gdellape/murphi/

cmurphi.php
10. Cadar, C., Engler, D.: Execution generated test cases: How to make systems code crash itself.

Model Checking Software (2005) 2–23.
11. Michael, C., Radosevich, W.: Black box security testing tools. cigital, 2005.
12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)



13. Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design
aid. In: Proceedings of the 1991 IEEE International Conference on Computer Design on
VLSI in Computer & Processors, IEEE Computer Society (1992) 522–525.

14. Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Venturini Zilli, M.: Integrating ram and
disk based verification within the murϕ verifier. In Geist, D., Tronci, E., eds.: Proceedings of
Correct Hardware Design and Verification Methods, 12th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2003. Volume 2860 of Lecture Notes in Computer Science.,
Springer (2003) 277–282.

15. Della Penna, G., Intrigila, B., Melatti, I., Minichino, M., Ciancamerla, E., Parisse, A., Tronci,
E., Venturini Zilli, M.: Automatic verification of a turbogas control system with the murϕ
verifier. In Maler, O., Pnueli, A., eds.: Proceedings of Hybrid Systems: Computation and
Control, 6th International Workshop, HSCC 2003. Volume 2623 of Lecture Notes in Com-
puter Science., Springer (2003) 141–155.

16. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.: Parallel and
distributed model checking in eddy. In: SPIN. (2006) 108–125.


