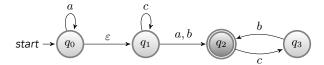
Fondamenti dell'Informatica

1 semestre

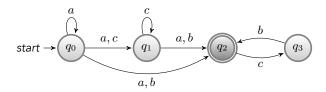
Prova scritta di esame del 4-7-2019

Prof. Giorgio Gambosi

a.a. 2018-2019

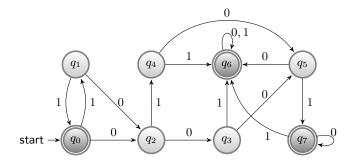

Ad ogni quesito proposto è associato il numero di punti ottenuti in caso di risposta corretta ed esaustiva. Risposte parziali possono portare all'attribuzione di una frazione di tale punteggio. Spiegare in modo chiaro ed esauriente i passaggi effettuati.

Il punteggio finale della prova risulta come somma dei punteggi acquisiti per i vari quesiti.


Quesito 1 (6 punti): Data l'espressione regolare $e=a^*c^*(a+b)(cb)^*$, si derivi una grammatica regolare che generi il linguaggio descritto da e.

Soluzione:

Automa non deterministico con ε -transizioni derivato dall'espressione regolare.


Automa non deterministico equivalente.

Grammatica regolare

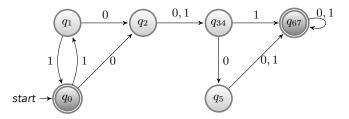
$$S = A_0 \quad \rightarrow \quad aA_0|aA_1|aA_2|bA_2|cA_1|a|b$$

$$A_1 \quad \rightarrow \quad cA_1|aA_2|bA_2|a|b$$

$$A_2 \quad \rightarrow \quad cA_3$$

$$A_3 \quad \rightarrow \quad bA_2|b$$

Quesito 2 (7 punti): Sia dato l'automa deterministico seguente:



Determinare l'automa minimo corrispondente

Soluzione:

Coppie di stati distinguibili:

	0	1	2	3	4	5	6
1	Х	-	-	-	-	-	-
2	х	x	-	-	-	-	-
3	x	x	X	-	-	-	-
4	X	x	Х		-	-	-
5	X	x	X	X	X	-	-
6	x	x	х	X	x	x	-
7	x	x	X	X	x	x	

Quesito 3 (9 punti): Sia data la grammatica G seguente

$$S \rightarrow ab|ba|SS|aSb|bSa$$

Data la stringa $\sigma=abaabb$, si determini, attraverso l'applicazione dell'algoritmo CYK, se $\sigma\in L(G)$.

Soluzione:

Grammatica in CNF equivalente.

$$\begin{array}{cccc} S & \rightarrow & AB|BA|SS|XB|YA \\ X & \rightarrow & AS \\ Y & \rightarrow & BS \\ A & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

Tabella CYK

	1	2	3	4	5	6
1	(a) $A \rightarrow a$	(ab) $S \rightarrow AB$	(aba) $X \rightarrow AS$	(abaa) -	(abaab) $X \rightarrow AS$	(abaabb) $S \rightarrow XB$, $S \rightarrow SS$
2	(b) B→ b	(ba) $S \rightarrow BA$	(baa) -	(baab) $S \rightarrow SS$	(baabb) Y→ BS	
3	(a) $A o a$	(aa) -	(aab) $X \rightarrow AS$	(aabb) $S \rightarrow XB$		
4	(a) $A ightarrow a$	(ab) $S o AB$	(abb) -			
5	(b) $B \rightarrow b$	(bb) -				
6	(b) $B \rightarrow b$					

Quindi, la stringa può essere derivata sia come (considerando derivazioni sinistre)

 $S\Rightarrow XB\Rightarrow ASB\Rightarrow aSSB\Rightarrow aBASB\Rightarrow abASB\Rightarrow abaABB\Rightarrow abaabb$

 $S\Rightarrow SS\Rightarrow ABS\Rightarrow abS\Rightarrow abASB\Rightarrow abaSB\Rightarrow abaABB\Rightarrow abaaBB\Rightarrow abaabB\Rightarrow abaabB$ Il che ci dice, tra l'altro, che la grammatica è ambigua.

Quesito 4 (3 punti): Definire una espressione regolare che rappresenti l'insieme delle stringhe su $\{a,b,c\}$ tali che il simbolo c può comparire soltanto tra un simbolo a e un simbolo b (o vice versa).

Soluzione: $((a + b)^*(abc + bca)^*(a + b)^*)^*$

Quesito 5 (2 punti): Illustrare, motivando la risposta, se i linguaggi context free sono chiusi rispetto all'operatore * di Kleene.

Quesito 6 (4 punti): Sia G una grammatica in CNF con assioma S, e sia σ una stringa in L(G). Si fornisca una valutazione della lunghezza della derivazione $S\Rightarrow \cdots \Rightarrow \sigma$.

Soluzione: $2 \cdot |\sigma| - 1$

Quesito 7 (2 punti): Cosa si intende per linguaggio LL(k)?