
4.2 Scheduling to Minimize Lateness

SUBSECTION 4.2 OF KT’s BOOK



Scheduling to Minimizing Lateness

Minimizing lateness problem.
■ Single resource processes one job at a time.
■ Job j requires tj units of processing time and is due at timedj.
■ Solution: If j starts at time sj, it finishes at time fj = sj +tj.
■ Lateness: lj  = max{ 0, fj - dj }.
■ Goal: schedule all jobs to minimize maximum lateness L = max lj.
■ Note: input elements are in blue, solution elements are in red, cost

elements are in violet

Ex:

2 3 4 5 6 7 8 11 12 13 14 15

d5  =14
9 10

d6 =15 d1 =6 d4 =9d3 = 9 d2 =8
0 1

lateness = 0lateness = 2

1 2 3 4 5 6

tj 3 2 1 4 3 2

dj 6 8 9 9 14 15

max lateness = 6
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Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

■ [Shortest processing time first] Consider jobs in ascending order  
of processing time tj.

■ [Earliest deadline first] Consider jobs in ascending order of  
deadline dj.

■ [Smallest slack] Consider jobs in ascending order of slack dj - tj.



G1 solution: Job 1; Job 2 --> Latency = 1  
Optimal Solution: Job 2; Job 1 --> Latency = 0

counterexampletj 1 10

dj 100 10

Greedy template. Consider jobs in some order.

■ [G1: Shortest processing time first] Consider jobs in ascending
order of processing time tj.

1 2
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Minimizing Lateness: Greedy Algorithms



Greedy template. Consider jobs in some order.

■ [G2 Smallest slack] Consider jobs in ascending order of slack dj - tj.

counterexampletj

dj

1

1 10

2 10

2
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Minimizing Lateness: Greedy Algorithms

G2 Solution: Job 2; Job 1. Latency = 10

Optimal: Job 1; Job 2. Latency = 1



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 =14d2 =8 d6 =15d1 =6 d4 =9d3 =9

max lateness = 1

Sort n jobs by deadline so that d1 £ d2 £ … £ dn

t ¬ 0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj ¬ t, fj ¬ t + tj  
t ¬ t + tj

output intervals [sj, fj]
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Minimizing Lateness: Greedy Algorithm
Greedy algorithm. Earliest deadline dfirst
Input: { (t1,d1), ….., (tj,dj),….(tn,dn) }

1 2 3 4 5 6

tj 3 2 1 4 3 2

dj 6 8 9 9 14 15



Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 8 9 10 11

d = 4 d = 6 d = 12
1 2 3 4 5 6 7
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Minimizing Lateness: Inversions

Observation. If a schedule (with no idle time) has an inversion, it has  
one with a pair of inverted jobs scheduled consecutively.

a £ b £ c ….   c’ : c’’.   ... <= f : f' : 
If b > f’ then for some consecutive   c’, c’’ it must holds c’ > c’’

j ibefore swap

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j (i.e. di <= dj) but j scheduled before i.

inversion
fi

[ as before, we assume jobs are numbered so that d1

Observation. Greedy schedule has no inversions.

8

£ d2 £ … £ dn ]



Minimizing Lateness: Inversions

LEMMA (Exchange Arg.). Swapping two consecutive, inverted jobs reduces the 
number of  inversions by one and does not increase the max lateness (the sum is
commutative!).

■ Pf. Let L be the lateness before the swap, and let L ' be it afterwards.

■ l 'k = lk for all k ¹ i, j
■ l 'i £ li
■ If job j is late: à

ij

i j

before swap

after swap

l’j = fj'-dj

= fi  -dj

£ fi  -di

= l’i

(definition)
( j finishes at time fi )  

(i < j)

(definition)

f'j

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:  
i < j (w.r.t. deadline d) but j is scheduled before i

inversion
fi

9



10

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest°number
of inversions, and let's see what happens.
■ Can assume S* has no idle time.
■ If S* has no inversions, then S = S*.
■ If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and  
strictly decreases the number of inversions

– this contradicts definition° of S* ▪
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Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy  
algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every  
possible solution must have a certain value. Then show that your  
algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found  
by the greedy algorithm without hurting its quality.

…



EXCERCISE 1 – PAGE 183

EXERCISE I: Prove that the Greedy Algorithm based on the earliest finish time is optimal.

SOLUTION: Let A ={i1, i2, ... ik} denote set of jobs selected by Greedy; 
Let J= {j1, j2, ... Jm} denote set of jobs in   an optimal solution.      We know …..

Lemma 1 (Greedy Stays Ahead). For any r = 1,…, k itholds f( ir ) <= f( jr )

- Now, suppose (by contradiction) that optimal solution is such that m >= k+1. So,
J = { j1, j2, ...,jk , jk+1.., jm }

- Apply Lemma 1 on intervals ik and jk:à f(jk) >= f(ik).   (*)

- From (*), we get that the Greedy would have inserted jk+1 too! Since it is compatible
with ik as well! Contradiction with the assumption |A| =k !
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EXCERCISE 2 AT PAGE 185 

-BUYING ITEMS OF INCREASING COSTS

DO AS HOMEWORK!

HINTS: DON’T LOOK AT THE BOOK, TRY GREEDY SOLUTIONS,  
and PROVE :

• INVERSIONS in the good greedy ORDERING  imply
CONTRADICTIONS 

• How prove CONTRADICTIONS? exchange argument


