# 4.2 Scheduling to Minimize Lateness

SUBSECTION 4.2 OF KT's BOOK



# Scheduling to Minimizing Lateness

#### Minimizing lateness problem.

- . Single resource processes one job at a time.
- . Job j requires  $t_j$  units of processing time and is due at time  $d_j$ .
- . Solution: If j starts at time  $s_j$ , it finishes at time  $f_j = s_j + t_j$ .
- Lateness:  $I_j = max\{0, f_j d_j\}$ .
- . Goal: schedule all jobs to minimize maximum lateness  $L = max I_j$ .
- . Note: input elements are in blue, solution elements are in red, cost elements are in violet

Ex:

|                |   |   |   |   | 5  |    |
|----------------|---|---|---|---|----|----|
| † <sub>j</sub> | 3 | 2 | 1 | 4 | 3  | 2  |
| $d_{j}$        | 6 | 8 | 9 | 9 | 14 | 15 |



# Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

. [Shortest processing time first] Consider jobs in ascending order of processing time  $\boldsymbol{t_j}$ .

. [Earliest deadline first] Consider jobs in ascending order of deadline  $\boldsymbol{d}_j$ .

. [Smallest slack] Consider jobs in ascending order of slack  $d_j - t_j$ .

# Minimizing Lateness: Greedy Algorithms

#### Greedy template. Consider jobs in some order.

. [G1: Shortest processing time first] Consider jobs in ascending order of processing time  $t_j$ .

|    | 1   | 2  |
|----|-----|----|
| tj | 1   | 10 |
| dj | 100 | 10 |

counterexample

G1 solution: Job 1; Job 2 --> Latency = 1

Optimal Solution: Job 2; Job 1 --> Latency = 0

# Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

. [G2 Smallest slack] Consider jobs in ascending order of slack  $d_j - t_j$ .

G2 Solution: Job 2; Job 1. Latency = 10

Optimal: Job 1; Job 2. Latency = 1

|                | 1 | 2  |
|----------------|---|----|
| † <sub>j</sub> | 1 | 10 |
| dj             | 2 | 10 |

counterexample



# Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline d first Input:  $\{(t_1,d_1), ...., (t_j,d_j),....(t_n,d_n)\}$ 

```
Sort n jobs by deadline so that d_1 \le d_2 \le ... \le d_n

t \leftarrow 0

for j = 1 to n

Assign job j to interval [t, t + t<sub>j</sub>]

s_j \leftarrow t, f_j \leftarrow t + t_j

t \leftarrow t + t_j

output intervals [s_j, f_j]
```

|                |   |   |   |   | 5  |    |
|----------------|---|---|---|---|----|----|
| † <sub>j</sub> | 3 | 2 | 1 | 4 | 3  | 2  |
| dj             | 6 | 8 | 9 | 9 | 14 | 15 |





# Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.



Observation. The greedy schedule has no idle time.

# Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that: i < j (i.e. di <= dj) but j scheduled before i.



[ as before, we assume jobs are numbered so that  $d_1 \le d_2 \le ... \le d_n$  ]

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

```
a \le b \le c \dots c' : c'' \dots \leftarrow f : f' :
If b > f' then for some consecutive c', c'' it must holds c' > c''
```



# Minimizing Lateness: Inversions

**Def.** Given a schedule S, an inversion is a pair of jobs i and j such that: i < j (w.r.t. deadline d) but j is scheduled before i



LEMMA (Exchange Arg.). Swapping two consecutive, inverted jobs **reduces** the number of inversions by **one** and does not increase the max lateness (the sum is commutative!).

- . Pf. Let L be the lateness before the swap, and let L' be it afterwards.
- .  $I'_k = I_k$  for all  $k \neq i$ , j
- . I '<sub>i</sub>≤I<sub>i</sub>
- . If job j is late:  $\rightarrow$

$$\mathbf{l'}_j = f_j' - d_j$$
 (definition)  
 $= f_i - d_j$  (j finishes at time  $f_i$ )  
 $\leq f_i - d_i$  (definition)  
 $= \mathbf{l'}_i$  (definition)



# Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule 5 is optimal.

- Pf. Define 5\* to be an optimal schedule that has the fewest number of inversions, and let's see what happens.
  - . Can assume 5\* has no idle time.
- If  $S^*$  has **no** inversions, then  $S = S^*$ .
- . If 5\* has an inversion, let i-j be an adjacent inversion.
  - swapping i and j <u>does not increase</u> the maximum lateness and strictly <u>decreases</u> the **number of inversions**
  - this contradicts definition of 5\* •

# Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm's.

**Structural**. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

**Exchange argument**. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

...

#### EXCERCISE 1 - PAGE 183

**EXERCISE I**: Prove that the Greedy Algorithm based on the earliest finish time is optimal.

```
SOLUTION: Let A = \{i_1, i_2, ... i_k\} denote set of jobs selected by Greedy; Let J = \{j_1, j_2, ... J_m\} denote set of jobs in an optimal solution. We know .....
```

Lemma 1 (Greedy Stays Ahead). For any r = 1,..., k it holds  $f(i_r) \leftarrow f(j_r)$ 

- Now, suppose (by contradiction) that optimal solution is such that  $m \ge k+1$ . So,  $J = \{ j_1, j_2, ..., j_k, j_{k+1}..., j_m \}$
- Apply Lemma 1 on intervals  $i_k$  and  $j_k$ :  $\rightarrow f(j_k) >= f(i_k)$ . (\*)
- From (\*), we get that the Greedy would have inserted  $j_{k+1}$  too! Since it is compatible with  $i_k$  as well! Contradiction with the assumption |A| = k!



#### EXCERCISE 2 AT PAGE 185

-BUYING ITEMS OF INCREASING COSTS

DO AS HOMEWORK!

HINTS: DON'T LOOK AT THE BOOK, TRY GREEDY SOLUTIONS, and PROVE:

- INVERSIONS in the good greedy ORDERING imply CONTRADICTIONS
- How prove CONTRADICTIONS? exchange argument