P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. $P \subseteq NP$.

- Pf. Consider any problem X in P.
- . By definition, there exists a poly-time algorithm A(s) that solves X.
- . Certificate: $t = \varepsilon$, certifier C(s, t) = A(s).

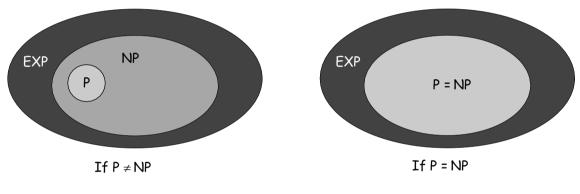
Claim. NP \subseteq EXP.

- Pf. Consider any problem X in NP.
- . By definition, there exists a poly-time certifier C(s, t) for X.
- . To solve input s, run C(s, t) on all strings t with $|t| \le p(|s|)$.
- . Return yes, if C(s, t) returns yes for any of these.

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

- . Is the decision problem as easy as the certification problem?
- . Clay \$1 million prize.



would break RSA cryptography (and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ... If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

Copyright © 2000, Twentieth Century Fox

8.4 NP-Completeness

Polynomial Transformation

Def. Problem X polynomially reduces (Cook) to problem Y if arbitrary instances of problem X can be solved using:

- . Polynomial number of standard computational steps, plus
- . Polynomial number of calls to oracle that solves problem Y.

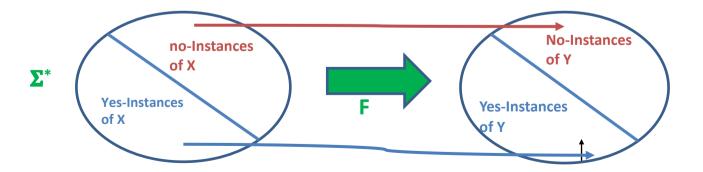
Def. Problem X polynomially transforms (Karp) to problem Y if $F: \Sigma^* \rightarrow \Sigma^*$ exists such that:

- 1. F can be computed in poly(|x|) time
- 2. x is a yes instance of X iff y = F(x) is a yes instance of Y

Prop. 1 implies |y| to be of size polynomial in |x|

Note. Polynomial transformation is polynomial, reduction with <u>just one call</u> to oracle for Y, exactly at the end of the algorithm for X. Almost all our reductions will be of this form.

Open question. Are these two concepts the same with respect to NP? we abuse notation \leq_p and blur distinction



POLYNOMIAL (KARP) REDUCTIONS: Algorithmic use

THM 1. IF $X \leq_p Y$ and $Y \in P$ THEN $X \in P$ (So, class P is closed w.r.t. \leq_p)

Proof. By Hyp. there is a poly reduction $F: \Sigma^* \rightarrow \Sigma^*$ from X to Y and a deterministic **poly-time** algorithm ALG solving Y. Let **p()** and **g()** the polynomial time-**bounds** for computing **F** and ALG, respectively

Then, consider any instance $\mathbf{x} \in \mathbf{\Sigma}^*$ and make the following steps:

- 1. Compute $F(x) = y \in \Sigma^*$; (Note: Time is p(|x|) and $|y| \le p(|x|)$)
- 2. Compute ALG(y); (Note: Time is $g(|y|) \leftarrow g(p(|x|)$ so it all poly(|x|)!)
- 3. If ALG(y) = yes THEN return yes ELSE return no

POLYNOMIAL REDUCTIONS: NP-Completeness

Def. A problem **Y** is **NP-Complete** if:

1. $Y \in NP$

2. For every problem \times in NP, it holds: $X \leq_p Y$.

THM 2. Suppose Y is an NP-complete problem. Then: Y is solvable in poly-time (i.e. $Y \in P$) iff P = NP

Proof. \leftarrow If **P** = **NP** then **Y** can be solved in **poly-time** since **Y** \in **NP**.

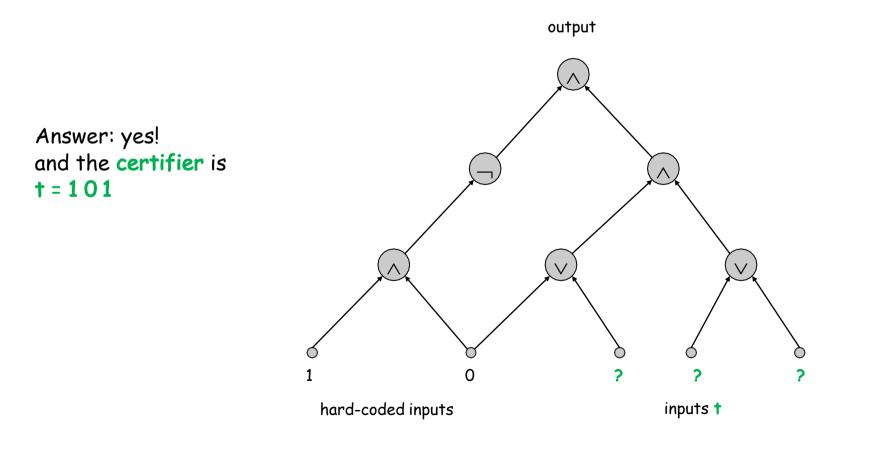
Proof. \Rightarrow Suppose Y can be solved in **poly-time**.

- . Let X be any problem in NP. Since $X \leq_p Y$, from THM 1, we can solve X in **poly-time**.
- . This implies $NP \subseteq P$.
- . We already know. $P \subseteq NP$. Thus P = NP.

Fundamental question. Do there exist "natural" NP-complete problems?

A first NP-Complete Problem: Circuit Satisfiability

CIRCUIT-SAT. Given a combinational **circuit** K built out of AND, OR, and NOT gates, is there a way to set the circuit **inputs** so that the **output** is 1? Namely, is circuit $K(x_1, x_2, ..., x_n; t_1, t_2, ..., t_m)$ satisfiable?



The "First" NP-Complete Problem

THM. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973] Pf. (sketch)

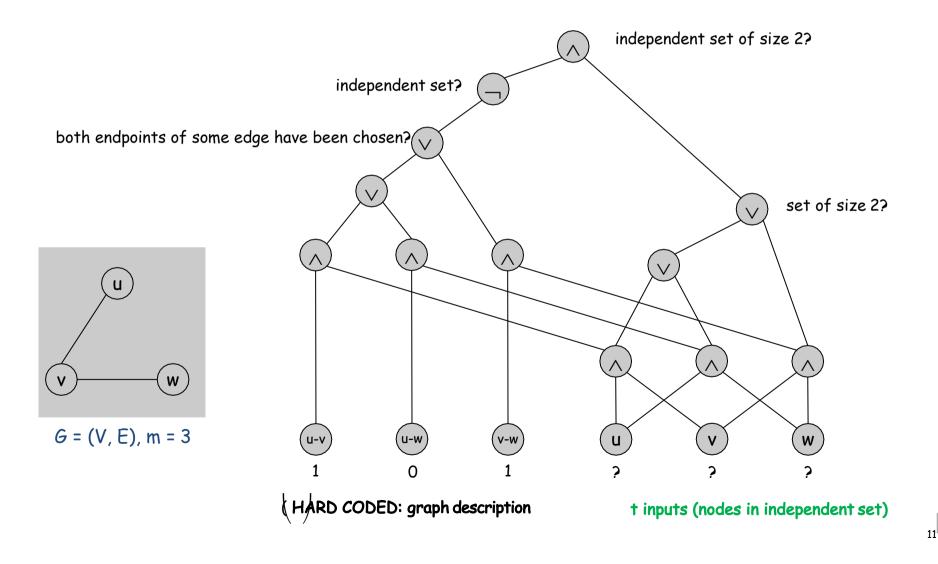
. Any **algorithm** that takes a fixed number of bits **N** as input and produces a yes/no answer can be represented by such a **circuit**. Moreover, if algorithm takes **poly-time**, then circuit is of **poly-size**.

sketchy part of proof: fixing the number **n** of bits is important, and reflects basic distinction between algorithms and circuits

- . Consider some problem X in NP. By Hyp. It has a poly-time certifier C(s, t). To determine whether $s \in X$, need to know if there exists a certificate t of length p(|s|) such that C(s, t) = yes.
- . View C(s, t) as an <u>algorithm</u> on |s| + p(|s|) bits (input s, certificate t) and convert it into a **poly-size circuit** $K(s_1, s_2, ..., s_n; t_1, t_2, ..., t_m)$.
 - first **n=|s|** bits are **hard-coded** with input **s**
 - remaining m= p(|s|) bits represent bits of the certificate t
- . Circuit K is satisfiable iff C(s, t) = yes.

Example of Reduction to Circuit SAT

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true iff graph G has an independent set of size 2.



Establishing NP-Completeness via poly-time reductions

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.

- . Step 1. Show that Y is in NP.
- . Step 2. Choose an *old* NP-complete problem X.
- . Step 3. Prove that $X \leq_p Y$.

THM. If X is an NP-complete problem, and Y is a problem in NP with the property that $X \leq_P Y$ then Y is NP-complete, as well

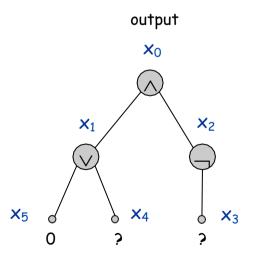
Pf. Let W be any problem in NP. Then $W \leq_P X \leq_P Y$.. By transitivity, $W \leq_P Y$.. Hence Y is NP-complete.

3-SAT is NP-Complete

THM. 3-SAT is NP-complete.

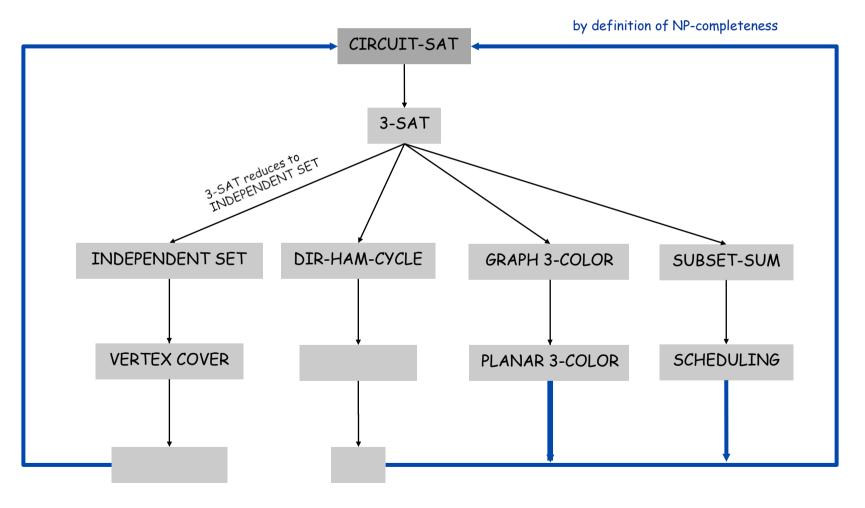
Pf. Suffices to show that CIRCUIT-SAT \leq_P 3-SAT since 3-SAT is in NP.

- . Let K be any circuit.
- . Create a 3-SAT variable x_i for each circuit element i.
- . Make circuit compute correct values at each node:
 - $x_{2} = \neg x_{3} \quad \text{add 2 clauses:} \quad x_{2} \lor x_{3} , \quad \overline{x_{2}} \lor \overline{x_{3}}$ $x_{1} = x_{4} \lor x_{5} \quad \text{add 3 clauses:} \quad x_{1} \lor \overline{x_{4}} , \quad x_{1} \lor \overline{x_{5}} , \quad \overline{x_{1}} \lor x_{4} \lor x_{5}$ $x_{0} = x_{1} \land x_{2} \quad \text{add 3 clauses:} \quad \overline{x_{0}} \lor x_{1} , \quad \overline{x_{0}} \lor x_{2} , \quad x_{0} \lor \overline{x_{1}} \lor \overline{x_{2}}$
- . Hard-coded input values and output value.
 - $-x_5 = 0$ add 1 clause: $\overline{x_5}$
 - $-x_0 = 1 \bullet \text{ add 1 clause: } x_0$
- Final step: turn clauses of length < 3 into clauses of length exactly 3.



NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!



14 2)))

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.

- . Packing problems: SET-PACKING, INDEPENDENT SET.
- . Covering problems: SET-COVER, VERTEX-COVER.
- . Constraint satisfaction problems: SAT, 3-SAT.
- . Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- . Partitioning problems: 3D-MATCHING 3-COLOR.
- . Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

