
1

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P Í NP.
Pf. Consider any problem X in P.
■ By definition, there exists a poly-time algorithm A(s) that solves X.
■ Certificate: t = e, certifier C(s, t) = A(s). ▪

Claim. NP Í EXP.
Pf. Consider any problem X in NP.
■ By definition, there exists a poly-time certifier C(s, t) for X.
■ To solve input s, run C(s, t) on all strings t with |t| £ p(|s|).
■ Return yes, if C(s, t) returns yes forany of these. ▪

The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
■ Is the decision problem as easy as the certification problem?
■ Clay $1 million prize.

EXP NP

P

If P ¹NP If P = NP

EXP
P = NP

would break RSA cryptography
(and potentially collapse economy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, …
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, …

Consensus opinion on P = NP? Probably no.

2

The Simpson's: P = NP?

Copyright © 1990, Matt Groening

Futurama: P = NP?

Copyright © 2000, Twentieth Century Fox

8.4 NP-Completeness

Polynomial Transformation
Def. Problem X polynomially reduces (Cook) to problem Y if arbitrary instances of
problem X can be solved using:

■ Polynomial number of standard computational steps, plus
■ Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomially transforms (Karp) to problem Y if F: 𝚺* à 𝚺* exists such that:
1. F can be computed in poly(|x|) time
2. x is a yes instance of X iff y= F(x) is a yes instance of Y

Prop. 1 implies |y| to be of size polynomial in |x|

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y,
exactly at the end of the algorithm for X. Almost all our reductions will be of this form.

Open question. Are these two concepts the same with respect to NP?
we abuse notation £ p and blur distinction

6

𝚺*

Yes-Instances
of X

no-Instances
of X

No-Instances
of Y

Yes-Instances
of Y

F

POLYNOMIAL (KARP) REDUCTIONS: Algorithmic use

THM 1. IF X £ p Y and Y ∈ P THEN X ∈ P (So, class P is closed w.r.t. £ p)

Proof. By Hyp. there is a poly reduction F: 𝚺* à 𝚺* from X to Y and a
deterministic poly-time algorithm ALG solving Y. Let p() and g() the polynomial
time-bounds for computing F and ALG, respectively

Then, consider any instance x ∈ 𝚺* and make the following steps:

1. Compute F(x) = y ∈ 𝚺*; (Note: Time is p(|x|) and |y| <= p(|x|))

2. Compute ALG(y); (Note: Time is g(|y|) <= g(p(|x|) so it all poly(|x|) !)

3. If ALG(y) = yes THEN return yes ELSE return no

x y YES/NO

F ALG

8

POLYNOMIAL REDUCTIONS: NP-Completeness

Def. A problem Y is NP-Complete if:
1. Y ∈ NP
2. For every problem X in NP, it holds: X £ p Y.

THM 2. Suppose Y is an NP-complete problem. Then:
Y is solvable in poly-time (i.e. Y ∈ P) iff P = NP

Proof. Ü If P = NP then Y can be solved in poly-time since Y ∈ NP.

Proof. Þ Suppose Y can be solved in poly-time.
■ Let X be any problem in NP. Since X £ p Y, from THM 1, we can

solve X in poly-time.
■ This implies NPÍ P.
■ We already know. P Í NP. Thus P = NP. ▪

Fundamental question. Do there exist "natural" NP-complete problems?

Ù

¬

Ù Ú

Ù

Ú

1

9

0 ? ?

output

?

inputs thard-coded inputs

Answer: yes!
and the certifier is
t = 1 0 1

A first NP-Complete Problem: Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit K built out of AND, OR, and
NOT gates, is there a way to set the circuit inputs so that the output is 1?
Namely, is circuit K(x1,x2,...,xn ; t1,t2,...,tm) satisfiable ?

10

The "First" NP-Complete Problem

THM. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf. (sketch)

■ Any algorithm that takes a fixed number of bits N as input and produces a
yes/no answer can be represented by such a circuit. Moreover, if
algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof; fixing the number n of
bits is important, and reflects basic
distinction between algorithms and circuits

■ Consider some problem X in NP. By Hyp. It has a poly-time certifier C(s, t).
To determine whether s ∈ X, need to know if there exists a certificate t
of length p(|s|) such that C(s, t) = yes.

■ View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, certificate t) and
convert it into a poly-size circuit K(s1,s2,...,sn ; t1,t2,...,tm) .

– first n=|s| bits are hard-coded with input s
– remaining m= p(|s|) bits represent bits of the certificate t

■ Circuit K is satisfiable iff C(s, t) = yes.

Ù

¬

Ú

u-v

1

independent set of size 2?

t inputs (nodes in independent set)

Ú

Ù

u-w

0

Ù

v-w

1

Ù

u
?

Ù

v
?

Ù

w
?

Ù

Ú

set of size 2?

both endpoints of some edge have been chosen? Ú

independent set?

Example of Reduction to Circuit SAT

Ex. Construction below creates a circuit K whose inputs can be set so
that K outputs true iff graph G has an independent set of size 2.

u

(HARD CODED: graph description
11

⎝ ⎠

v w

G = (V, E), m = 3

Establishing NP-Completeness via poly-time reductions

Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
■ Step 1. Show that Y is in NP.
■ Step 2. Choose an old NP-complete problem X.
■ Step 3. Prove that X £ p Y.

THM. If X is an NP-complete problem, and Y is a problem in NP with
the property that X £ P Y then Y is NP-complete, as well

Pf. Let W be any problem in NP. Then W £ P X
■ By transitivity, W £ P Y.
■ Hence Y is NP-complete. ▪

£ P Y.

by assumptionby definition of
NP-complete

12

3-SAT is NP-Complete

THM. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT £ P 3-SAT since 3-SAT is in NP.
■ Let K be any circuit.
■ Create a 3-SAT variable xi for each circuit element i.
■ Make circuit compute correct values at each node:

– x2 = ¬ x3

– x1 = x4 Úx5

– x0 = x1 Ùx2

• add 2 clauses:
• add 3 clauses:
• add 3 clauses:

■ Hard-coded input values and output value.
– x5 = 0
– x0 = 1

• add 1 clause:
• add 1 clause:

■ Final step: turn clauses of length < 3 into
clauses of length exactly 3. ▪

0 ? ?

output

x0

Ù
x2

¬

x1

Ú

x2 Ú x3 , x2 Ú x3

x1 Ú x4 , x1 Ú x5 , x1 Ú x4 Ú x5

x0 Ú x1 , x0 Ú x2 , x0 Ú x1 Ú x2

x3x4x5

x5

x0

13

Observation. All problems below are NP-complete and polynomial
reduce to one another!

CIRCUIT-SAT

3-SAT

DIR-HAM-CYCLE

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULING

SET COVER

NP-Completeness

by definition of NP-completeness

GRAPH 3-COLOR

PLANAR 3-COLOR

INDEPENDENT SET

VERTEX COVER

14

15

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
■ Packing problems: SET-PACKING, INDEPENDENT SET.
■ Covering problems: SET-COVER, VERTEX-COVER.
■ Constraint satisfaction problems: SAT, 3-SAT.
■ Sequencing problems: HAMILTONIAN-CYCLE, TSP.
■ Partitioning problems: 3D-MATCHING 3-COLOR.
■ Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

