
ASD (2° Mod)
Lesson n. 2 on MST



Time complexity of Prim’s Algorithm

THM: O(n2) with an array; O(m log n) with a binary heap.

Proof:  DO AS EXERCISE!

SUGGESTIONS: give answers to :

• How many times a node is explored ?

• How do you represent Q?

• Which operations on Q for every new explored node? How many? How can you implement 
them? 
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Prim(G, c) {
foreach (v Î V) a[v] ¬ ¥
Initialize an empty priority queue Q
foreach (v Î V) insert v onto Q
Initialize set of explored nodes S ¬ f

while (Q is not empty) {
u ¬ delete min element from Q
S ¬ S È { u }
foreach (edge e = (u, v) incident to u)

if ((v Ï S) and (ce < a[v]))
decrease priority a[v] to ce

}

Implementation.  Use a priority queue ala Dijkstra.
! Maintain set of explored nodes S.
! For each unexplored node v, maintain attachment cost

a[v] = cost of cheapest edge v to a node in S

For any visited node u € V,  update O(deg(u)) keys in Q à !u deg(u) = O(m)
Each update costs O(log n) (using Heap) à Total: O(m log n)
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Kruskal's Algorithm:  Proof of Correctness

Kruskal's algorithm.  [Kruskal, 1956]
! Consider edges in ascending order of weight.
! Case 1:  If adding e to T creates a cycle, discard e according to cycle property.
! Case 2:  Otherwise, insert e = (u, v) into T according to cut property where S = set of 

nodes in u's connected component. 

Case 1

v

u

Case 2

e

e
S
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Implementation:  Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1 £ c2 £ ... £ cm.
T ¬ f

foreach (u Î V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T ¬ T È {ei}
merge the sets containing u and v

}
return T

}

Implementation.  Use the union-find data structure.
! Build set T of edges in the MST.
! Maintain set for each connected component.
! O(m log n) for sorting and  O(m a (m, n)) for union-find.

are u and v in different connected components?

merge two components

m £ n2 Þ log m is O(log n) essentially a constant



NEW DATA STRUCTURE! 

WE  NOW NEED A NEW DATA STRUCTURE TO MANAGE 
SUBSET OPERATIONS EFFICIENTLY!

THIS PART FOLLOWS THE BOOK  and IT WILL BE GIVEN IN FEW  LESSONS:

Demetrescu et Al,
Algoritmi e Strutture Dati
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ARBITRARY EDGE COSTS

To remove the assumption that all edge costs are distinct:  perturb all edge costs by tiny 
amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons.  If perturbations 
are sufficiently small, MST with perturbed costs is MST with original costs. 

Implementation.  Can handle arbitrarily small perturbations implicitly by breaking ties 
lexicographically, according to index.

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2



Small perturbations of edge costs have no impacts!

Assume c(e) ≥ 1 for all e € E and fix b = 1/n^2. Now, consider the new instance Ib = <G(V,E), 
cb:E àR+>  such that:

cb(e) = c(e) ± b and c(e) ≠ c(e’) for any e ≠ e’ (all distinct!)
THM. Let Tb be any MST for Ib then Tb is also a MST for the original instance

I = <G(V,E), c:E àR+> 

Proof. By contradiction. Absurd hyp:exists T* better than Tb for I, 
We use the following facts:

I) C(T*, Ib) <  C(T*,I) + 1/n (since b=1/n^2)
II) C(T*,I) ≤ C(Tb,I) -1          (absurd hyp.)
III) C(Tb,I) < C(Tb, Ib) + 1/n (since b=1/n^2)

(I) ß (II) à IV) C(T*,Ib) < C(Tb,I) -1  + 1/n
(IV)ß(III) à C(T*,Ib) < C(Tb, Ib) + 1/n -1 + 1/n (for n > 2)

<  C(Tb, Ib)  (absurd!)
¤
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EXCERCISE N.1 (MST Properties)

Input: Connected Graph G(V,E);  e  Î E.
Output: Decide whether an MST T exists s.t. e  Î T

Provide an algorithm working in O(m+n) time.

Hint:   Combine the CUT Property and the CYCLE one to decide
whether e is a MINIMAL BRIDGE.



How  detect which is the case for input G(V,E);c:EàR+; e=(u,w) in E ?

Simple Idea:

1) Remove all edges from E which are more expensive than e and remove also e. Set G’(V,E’) as 
this new graph.

2) Start a BFS (or a DFS) from u (or from w) over G’(V,E’)

3) If the computed Tree T(u) contains w then return: e does not belong to any MST, otherwise 
return: it does!
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Let e := (u,w) and c(e) := c
I) case: there is a Path (forming a cycle with e)  where e is the most
expensive!
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e

Then, by the cycle property à e cannot belong to any MST



S
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C(e)=x

Then, by the cut  property à e belongs to any MST

II case: the Set S of all nodes reachable from u with edges cheaper than x
does not contain w and, so, the set V-S contains w and all nodes reachable from 
w with edges cheaper than x

V-Sc(e’)>x
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Excersise n.2

Prove or Confute the following Statements:

a) Let <G(V,E) w> be s.t. G is connected and all edges have distinct weights. Let e* be the edge 
of minimal weight.  Does e* always belong to an MST ?

b) Let T be an MST for <G(V,E),w> and consider the NEW instance          < G(V,E),w2 > where

for any  e Î E : w2 (e) = (w(e))2

Is T an MST for < G(V,E),w2 >  as well?



Shortest Path Tree vs Minimum Spanning Tree

• Consider an instance of the MST problem: <G(V,E);c: E à R+>

• FACT 1: The  MST T(s) computed by Prim’s Algorithm may depend by the source node s. But 
T(s) is  a feasible and optimal solution for instance <G(V,E);c: E à R+>, for any choice of s’
in V.

• Consider an instance of the SPT problem: <G(V,E);c: E à R+;s>

• FACT 2: The SPT T(s) (and its cost) computed by any correct algorithm may depend on 
the choice of s
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4.7  Clustering

Outbreak of cholera deaths  in London in 1850s.
Reference: Nina Mishra, HP Labs
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Clustering

Clustering.  Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups.

Distance function.  Numeric value specifying "closeness" of two objects:
distance(pi, pj)

Fundamental problem.  Divide into clusters so that points in different 
clusters are far apart.
! Routing in mobile ad hoc networks.
! Identify patterns in gene expression.
! Document categorization for web search.
! Similarity searching in medical image databases
! Skycat:  cluster 109 sky objects into stars, quasars, galaxies.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold
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Clustering of Maximum Spacing

k-Clustering.  Divide objects into k non-empty groups.

Distance function.  Assume it satisfies several natural properties.
! d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
! d(pi, pj) ³ 0 (nonnegativity)
! d(pi, pj) = d(pj, pi) (symmetry)

Spacing.  Min distance between any pair of points in different clusters.

Clustering of maximum spacing.  Given an integer k, find a k-clustering of maximum spacing.

spacing

k = 4



K-Clustering

EXCERCISE: Provide formal definition of the K-Clustering Problem:

• INSTANCE: I = <….>  ??????
• FEASIBLE SOLUTIONS: Y = ….. ????
• COST OF A FEASIBLE SOLUTION:  c(Y)
• GOAL:  MINIMIZE/MAXIMIZE ???

• Determine the main parameters of the size of the Instance
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PROBLEM MODEL

MAIN IDEA:

USE WEIGHTED GRAPHS TO REPRESENT THE INSTANCE !

G(V,E), d: E à R+ , where

• V = U = { p1, …,  pn }
• E = {ALL non-ordered pairs in V} (i.e. complete graph)
• Cost(e) = d(pi, pj) for any e = {pi, pj}
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Greedy Clustering Algorithm

Single-link k-Clustering algorithm.
! Form a graph on the vertex set U, corresponding to n clusters.
! Find the closest pair (edge) of objects (p,p’) such that  p & p’ are not 

in the same  cluster, and add an edge between them: so merging 2 
clusters.

! Repeat n-k times until there are exactly k clusters.

Key Obs. 1.  This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Key Obs. 2.  Equivalent to finding an MST T and deleting the k-1 most 
expensive edges from T (thus forming k connected components).

Proofs of 1 and 2:  Excercises
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Greedy Clustering Algorithm:  Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting 
the k-1 most expensive edges of an MST. Then, C* is a k-clustering of 
maximal  spacing.

Pf.  Let C denote some other clustering C1, …, Ck.
! The spacing of C* is the length d* of the (k-1)st most expensive 

edge.
! Let p, p’ be in the same cluster in C*, say C*r, but different clusters 

in C, say Cs and Ct.
! Some edge (q, q’) on p-->p’ path in C*r spans two diff. clusters in C.
! All edges on   p-->p’ path have length £ d*

since Kruskal chooses them.
! Spacing of C is £ d* since q and q’

are in different clusters of C.  ▪
q q’p p’

Cs Ct

C*r


